農薬評価書

フルベンジアミド (第5版)

2017年7月 食品安全委員会

目次

	頁
○ 審議の経緯	 4
〇 食品安全委員会委員名簿	 6
〇 食品安全委員会農薬専門調査会専門委員名簿	 6
〇 要 約	 11
I. 評価対象農薬の概要	 12
1. 用途	 12
2. 有効成分の一般名	 12
3. 化学名	
4. 分子式	
5. 分子量	
6.構造式	
7. 開発の経緯	 13
Ⅱ. 安全性に係る試験の概要	
1. 動物体内運命試験	
(1) ラット(単回経口投与)	
(2) ラット(反復経口投与)	
(3)ラット及びマウス(反復経口投与)	
(4) 泌乳ヤギ	
(5) 産卵鶏	
2. 植物体内運命試験	
(1) りんご (2) キャベツ	
(3)トマト(4)水稲	
(4) 小値(5) とうもろこし	
(6)後作物	
3. 土壌中運命試験	
3. 工場中建印試験	
(2)土壌表面光分解試験	
(3) 土壌吸脱着試験	
4. 水中運命試験	
(1)加水分解試験	
(2) 水中光分解試験	
5. 土壌残留試験	

6. 作物等残留試験	30
(1)作物残留試験	30
(2)後作物残留試験	30
(3)畜産物残留試験	30
(4)推定摂取量	31
7. 一般薬理試験	31
8. 急性毒性試験	32
(1)急性毒性試験	32
(2)急性神経毒性試験(ラット)	33
9. 眼・皮膚に対する刺激性及び皮膚感作性試験	33
1 O. 亜急性毒性試験	33
(1)90 日間亜急性毒性試験(ラット)	33
(2) 90 日間亜急性毒性試験(マウス)	34
(3)90 日間亜急性毒性試験(イヌ)	35
1 1. 慢性毒性試験及び発がん性試験	36
(1)1 年間慢性毒性試験(ラット)	36
(2)1 年間慢性毒性試験(イヌ)	37
(3)2 年間発がん性試験(ラット)	38
(4)18 か月間発がん性試験(マウス)	39
1 2. 生殖発生毒性試験	40
(1)2 世代繁殖試験(ラット)	40
(2)1 世代繁殖試験(ラット)<追加試験>	42
(3)発生毒性試験(ラット)	44
(4)発生毒性試験(ウサギ)	45
(5)発達神経毒性試験(ラット)	45
1 3.遺伝毒性試験	46
14. その他の試験	47
(1)ラットの甲状腺関連ホルモン濃度及び肝薬物代謝酵素に対する影響	47
(2) <i>In vitro</i> におけるヨードサイロニン脱ヨード酵素 type1 に対する影響	47
(3)1世代繁殖試験における児動物の眼球の病理組織学的検査	48
(4) 混餌投与による眼発達に対する影響(マウス)	48
(5)眼球異常を惹起する暴露時期の検討試験(ラット)	48
(6)生後眼球発達における病理組織学的変化に対する影響(ラット)	50
(7)眼球異常と血液凝固阻害との関連性(ラット)	50
(8)肝ミクロソーム画分による <i>in vitro</i> 代謝試験	53
(9)28 日間免疫毒性試験(ラット)	53
Ⅲ. 食品健康影響評価	55

• 別紙 1:代謝物/分解物略称	. 63
・別紙 2:検査値等略称	. 64
別紙3:作物残留試験成績(国内)	. 66
・別紙 4:作物残留試験成績(海外)	. 75
別紙5:後作物残留試験成績	. 80
別紙6:畜産物残留試験成績	. 81
・別紙 7:推定摂取量	. 83
• 参昭	. 86

<審議の経緯>

一第1版関係一

2005年 3月 17日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 値設定依頼(新規:だいず、キャベツ等)

2005年 3月 31日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第 0331001 号)

2005年 4月 1日 関係書類の接受(参照 1~41)

2005年 4月 7日 第89回食品安全委員会(要請事項説明)

2005年 6月 15日 第31回農薬専門調査会

2005年 12月 12日 追加資料受理(参照 42)

2006年 1月 11日 第 40 回農薬専門調査会

2006年 4月 3日 追加資料受理(参照 43)

2006年 8月 2日 第3回農薬専門調査会総合評価第一部会

2006年 8月28日第2回農薬専門調査会幹事会

2006 年 9 月 7 日 第 158 回食品安全委員会 (報告)

2006年 9月 7日 から 10月6日まで 国民からの意見・情報の募集

2006年 10月 23日 農薬専門調査会座長から食品安全委員会委員長へ報告

2006年 10月 26日 第165回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照 44)

2007年 2月 27日 残留農薬基準告示 (参照 45)

2007年 2月 27日 初回農薬登録

一第2版関係一

2007年 10月 19日 農林水産省から厚生労働省へ適用拡大申請に係る連絡及び基 準値設定依頼(なし、おうとう等)

2007年 11月 9日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第1109009号)

2007年 11月 12日 関係書類の接受(参照 46~48)

2007 年 11 月 15 日 第 215 回食品安全委員会 (要請事項説明)

2008年 1月 18日 第34回農薬専門調査会幹事会

2008年 1月29日農薬専門調査会座長から食品安全委員会委員長へ報告

2008年 1月 31日 第 224 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照 49)

-第3版関係-

2009年 6月 8日 インポートトレランス設定の要請(とうもろこし、かぼちゃ等)

2009 年 8月 21日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準値設定依頼(適用拡大:ブロッコリー、ばれいしょ等)

- 2009年 10月 27日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安 1027 第 4 号)、関係書類の接受(参照 50~55)
- 2009年 10月 29日 第307回食品安全委員会(要請事項説明)
- 2010年 6月 28日 第63回農薬専門調査会幹事会
- 2010年 7月 20日 農薬専門調査会座長から食品安全委員会委員長へ報告
- 2010年 7月 22日 第 341 回食品安全委員会 (報告)

(同日付け厚生労働大臣へ通知) (参照 57)

2011 年 7月 19日 残留農薬基準告示 (参照 58)

一第4版関係一

- 2011年 11月 25日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準設定依頼(適用拡大:とうもろこし、そば等)
- 2011年 11月 30日 インポートトレランス設定の要請 (ナッツ類)
- 2012年 1月 19日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安 0119 第5号)
- 2012年 1月 23日 関係書類の接受(参照 59~69)
- 2012 年 1月 26 日 第 416 回食品安全委員会 (要請事項説明)
- 2012年 9月 27日 第86回農薬専門調査会幹事会
- 2012年 10月 9日 農薬専門調査会座長から食品安全委員会委員長へ報告
- 2012年 10月 15日 第449回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照 70)

2014年 3月 10日 残留農薬基準告示(参照 71)

一第5版関係一

- 2016年 4月 18日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基 準設定依頼(適用拡大:ごぼう、かぼちゃ等)
- 2016年 7月 11日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発生食 0711 第5号) (参照 72)
- 2016年 7月 12日 関係書類の接受(参照 73~74)
- 2016年 7月 19日 第615 回食品安全委員会(要請事項説明)
- 2016年 11月 8日 追加資料受理(参照80~81)
- 2016年 11月 9日 第58回農薬専門調査会評価第二部会
- 2016年 12月 5日第59回農薬専門調査会評価第二部会
- 2017年 3月 23日 追加資料受理(参照 84~86)
- 2017年 4月 10日 第63回農薬専門調査会評価第二部会
- 2017 年 5月19日第148回農薬専門調査会幹事会
- 2017年 5月 30日 第651 回食品安全委員会(報告)

2017年 5月 31日 から6月29日まで 国民からの意見・情報の募集

2017年 7月 12日 農薬専門調査会座長から食品安全委員会委員長へ報告

2017年 7月 18日 第658回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知)

く食品安全委員会委員名簿>

(2006年6月30日まで) (2006年12月20日まで) (2009年6月30日まで)

寺田雅昭(委員長) 寺田雅昭(委員長) 見上 彪(委員長)

寺尾允男(委員長代理)見上 彪(委員長代理)小泉直子(委員長代理*)小泉直子長尾 拓

坂本元子長尾 拓野村一正中村靖彦野村一正畑江敬子本間清一畑江敬子廣瀬雅雄**

見上 彪 本間清一 本間清一

**: 2007 年 4 月 1 日から

*:2007年2月1日から

(2011年1月6日まで) (2012年6月30日まで) (2015年6月30日まで)

小泉直子(委員長) 小泉直子(委員長) 熊谷 進(委員長) 見上 彪(委員長代理*) 熊谷 進(委員長代理*) 佐藤 洋(委員長代理)

長尾 拓 長尾 拓 山添 康 (委員長代理)

野村一正野村一正三森国敏(委員長代理)畑江敬子畑江敬子石井克枝

 廣瀬雅雄
 上安平洌子

 村田容常
 村田容常

*: 2009年7月9日から *: 2011年1月13日から

村田容常

(2017年1月6日まで) (2017年1月7日から)

佐藤 洋 (委員長) 佐藤 洋 (委員長)

山添 康(委員長代理) 山添 康(委員長代理)

熊谷進吉田緑吉田緑山本茂貴石井克枝石井克枝堀口逸子堀口逸子

<食品安全委員会農薬専門調査会専門委員名簿>

(2006年3月31日まで)

村田容常

鈴木勝士 (座長) 小澤正吾 出川雅邦 廣瀬雅雄 (座長代理) 長尾哲二 高木篤也 真 石井康雄 武田明治 林 平塚 明 江馬 眞 津田修治* 太田敏博 津田洋幸 吉田 緑

*: 2005年10月1日から

(2007年3月31日まで)

鈴木勝士 (座長) 三枝順三 根岸友恵 廣瀬雅雄 (座長代理) 佐々木有 林 真 赤池昭紀 高木篤也 平塚 明 石井康雄 玉井郁巳 藤本成明 泉 啓介 田村廣人 細川正清 上路雅子 津田修治 松本清司 臼井健二 津田洋幸 柳井徳磨 江馬 眞 出川雅邦 山崎浩史 大澤貫寿 長尾哲二 山手丈至 太田敏博 中濹憲一 與語靖洋 大谷 浩 納屋聖人 吉田緑 小澤正吾 成瀬一郎 若栗 忍 布柴達男 小林裕子

(2008年3月31日まで)

小澤正吾

小林裕子

三枝順三

鈴木勝士 (座長) 佐々木有 根岸友惠 平塚 明 林 真(座長代理*) 代田眞理子**** 赤池昭紀 高木篤也 藤本成明 石井康雄 玉井郁巳 細川正清 泉啓介 田村廣人 松本清司 上路雅子 津田修治 柳井徳磨 臼井健二 津田洋幸 山崎浩史 江馬 眞 山手丈至 出川雅邦 大澤貫寿 長尾哲二 與語靖洋 太田敏博 中澤憲一 吉田 緑 大谷 浩 納屋聖人 若栗 忍

若栗 忍
*: 2007年4月11日から
**: 2007年4月25日から
***: 2007年6月30日まで
****: 2007年7月1日から

成瀬一郎***

西川秋佳**

布柴達男

(2010年3月31日まで)

佐代高玉田津津長中永納西布根根々田木井村田田尾澤田屋川柴岸本木眞篤郁廣修洋哲憲 聖秋達友信有理也巳人治幸二一清人佳男惠雄子

平藤細堀本松柳山山與義吉若塚本川本間本井崎手語澤田栗成正政正清徳浩丈靖克明明清夫充司磨史至洋彦緑忍明明清

*: 2009年1月19日まで **: 2009年4月10日から ***: 2009年4月28日から

(2012年3月31日まで)

小林裕子

三枝順三***

納屋聖人 (座長) 林 真 (座長代理) 相磯成敏 赤池昭紀 石井康雄 泉 啓介 上路雅子 臼井健二 太田敏博 小澤正吾 川合是彰 川口博明 小林裕子 三枝順三 佐々木有

代高玉田津津長永長西布根根八平田木井村田田尾田野川柴岸本田塚眞篤郁廣修洋哲。嘉秋達友信稔理也巳人治幸二清介佳男惠雄久明子

福藤細堀本松柳山山與義吉若井本川本間本井崎手語澤田栗義成正政正清徳浩丈靖克

(2014年3月31日まで)

• 幹事会

納屋聖人(座長)	上路雅子	松本清司
西川秋佳*(座長代理)	永田 清	山手丈至**
三枝順三(座長代理**)	長野嘉介	吉田 緑
赤池昭紀	本間正充	
・評価第一部会		
上路雅子 (座長)	津田修治	山崎浩史
赤池昭紀(座長代理)	福井義浩	義澤克彦
相磯成敏	堀本政夫	若栗 忍
・評価第二部会		
吉田 緑 (座長)	桑形麻樹子	藤本成明
松本清司(座長代理)	腰岡政二	細川正清
泉啓介	根岸友惠	本間正充
・評価第三部会		
三枝順三 (座長)	小野 敦	永田 清
納屋聖人(座長代理)	佐々木有	八田稔久
浅野 哲	田村廣人	増村健一
・評価第四部会		
西川秋佳*(座長)	川口博明	根本信雄
長野嘉介(座長代理*;	代田眞理子	森田 健
座長**)		
山手丈至(座長代理**)	玉井郁巳	與語靖洋
井上 薫**		*: 2013 年 9 月 30 日まで
		**: 2013年10月1日から
(2016年4月1日から)		
(2016年4月1日から)・幹事会		
西川秋佳(座長)	三枝順三	長野嘉介
納屋聖人(座長代理)		林 真
浅野 哲	清家伸康	本間正充
小野敦	中島美紀	與語靖洋
・評価第一部会	1 14000111) NHA (IIII
浅野 哲(座長)	桑形麻樹子	平林容子
平塚明(座長代理)	佐藤 洋	本多一郎
堀本政夫(座長代理)	清家伸康	森田 健
相磯成敏	豊田武士	山本雅子
小澤正吾	林	若栗 忍
・評価第二部会		1.21.
三枝順三(座長)	高木篤也	八田稔久

小野 敦 (座長代理)中島美紀福井義浩納屋聖人 (座長代理)中島裕司本間正充腰岡政二中山真義美谷島克宏杉原数美根岸友惠義澤克彦

· 評価第三部会

西川秋佳 (座長) 加藤美紀 髙橋祐次 長野嘉介 (座長代理) 川口博明 塚原伸治 與語靖洋 (座長代理) 久野壽也 中塚敏夫 石井雄二 篠原厚子 増村健一 太田敏博 代田眞理子 吉田 充

<第58回農薬専門調査会評価第二部会専門参考人名簿>

永田 清 松本清司

〈第59回農薬専門調査会評価第二部会専門参考人名簿〉

永田 清 松本清司

〈第63回農薬専門調査会評価第二部会専門参考人名簿〉

永田 清 松本清司

<第 148 回農薬専門調査会幹事会専門参考人名簿>

赤池昭紀 永田 清 松本清司

上路雅子

要 約

ョウ化フタルアミド基を有する殺虫剤である「フルベンジアミド」(CAS No.272451-65-7)について、各種資料を用いて食品健康影響評価を実施した。なお、今回、動物体内運命試験(ラット及びマウス)、作物残留試験(ごぼう、かぼちゃ等)等が新たに提出された。

評価に用いた試験成績は、動物体内運命(ラット、マウス、ヤギ及びニワトリ)、植物体内運命(りんご、キャベツ等)、作物等残留、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(ラット及びイヌ)、発がん性(ラット及びマウス)、2世代及び1世代繁殖(ラット)、発生毒性(ラット及びウサギ)、発達神経毒性(ラット)、遺伝毒性等の試験成績である。

各種毒性試験結果から、フルベンジアミド投与による影響は、主に肝臓(肝細胞肥大、肝細胞脂肪化等)、甲状腺(ろ胞上皮細胞肥大等)及び眼(眼球腫大等:ラット)に認められた。神経毒性、発がん性、繁殖能に対する影響、催奇形性、発達神経毒性及び遺伝毒性は認められなかった。

各種試験結果から、農産物及び畜産物中の暴露評価対象物質をフルベンジアミド (親化合物のみ)と設定した。

各試験で得られた無毒性量のうち最小値は、ラットを用いた 2 年間発がん性試験の 1.70~mg/kg 体重/日であったことから、これを根拠として、安全係数 100~で除した 0.017~mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

また、フルベンジアミドの単回経口投与等により生ずる可能性のある毒性影響として、2世代繁殖試験(ラット)、1世代繁殖試験(ラット)及び発達神経毒性試験(ラット)において、児動物で眼球腫大、虹彩癒着等の眼の異常が認められ、出生後の乳汁を介した暴露により惹起されると考えられることから、食品安全委員会は授乳中の女性を対象として急性参照用量(ARfD)を設定することが妥当と判断した。これらの変化に対する無毒性量のうち最小値は2世代繁殖試験の3.95 mg/kg 体重/日、最小毒性量のうち最小値は発達神経毒性試験の99.5 mg/kg 体重/日であった。一方、1世代繁殖試験において無毒性量15.0 mg/kg 体重/日が得られており、この差は用量設定の違いによるものと考えられた。したがって、食品安全委員会は、ラットを用いた2世代繁殖試験、1世代繁殖試験及び発達神経毒性試験の結果を総合的に評価し、15.0 mg/kg 体重/日を無毒性量とするのが妥当であると判断し、これを根拠として、安全係数100で除した0.15 mg/kg 体重を授乳中の女性に対するARfDと設定した。また、一般の集団に対してはフルベンジアミドの単回経口投与等により生ずる可能性のある毒性影響は認められなかったため、ARfD は設定する必要がないと判断した。

I. 評価対象農薬の概要

1. 用途

殺虫剤

2. 有効成分の一般名

和名:フルベンジアミド

英名: flubendiamide (ISO 名)

3. 化学名

IUPAC

和名:3-ヨード- N^2 (2-メシル-1,1-ジメチルエチル)-N-{4-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]- σ トリル}フタルアミド

英名:3-iodo-**N**²(2-mesyl-1,1-dimethylethyl)-**N**-{4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-o-tolyl}phthalamide

CAS (No. 272451-65-7)

和名: **№**-[1,1-ジメチル-2-(メチルスルホニル)エチル]-3-ヨード-**№**-{2-メチル-4-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]フェニル}-1,2-ベンゼンジカルボキサミド

英名: **N**²-[1,1-dimethyl-2-(methylsulfonyl)ethyl]-3-iodo-**N**²-{2-methyl-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl}-1,2-benzenedicarboxamide

4. 分子式

 $C_{23}H_{22}F_7IN_2O_4S$

5. 分子量

682.39

6. 構造式

7. 開発の経緯

フルベンジアミドは、1998 年に日本農薬株式会社により開発されたヨウ化フタルアミド基を有する殺虫剤である。本剤は、鱗翅目害虫の筋肉細胞小胞体のカルシウムイオンチャンネル(リアノジン受容体)に作用し、体収縮症状をもたらして殺虫活性を示す。

我が国では 2007 年 2 月 27 日に初回農薬登録され、欧州及び米国を始めとする 諸外国においても登録されている。今回、農薬取締法に基づく農薬登録申請(適用 拡大:ごぼう、かぼちゃ等)がされている。

Ⅱ 安全性に係る試験の概要

各種運命試験 [II.1~4] は、フルベンジアミドのフタル酸環を 14 C で標識したもの(以下「[pht- 14 C]フルベンジアミド」という。)及びアニリン環を 14 C で標識したもの(以下「[ani- 14 C]フルベンジアミド」という。)を用いて実施された。放射能濃度及び代謝物濃度は、特に断りがない場合は比放射能(質量放射能)からフルベンジアミドの濃度(14 C) に換算した値として示した。

代謝物/分解物及び検査値等略称は別紙1及び2に示されている。

1. 動物体内運命試験

- (1)ラット(単回経口投与)
- ① 吸収

a. 血中濃度推移

Fischer ラット (一群雌雄各 4 匹) に[pht-14C]フルベンジアミドを 2 mg/kg 体重 (以下 [1. (1) 及び (2)] において「低用量」という。) 又は 200 mg/kg 体重 (以下 [1. (1)] において「高用量」という。) で単回経口投与して、血中濃度推移について検討された。

全血及び血漿中薬物動態学的パラメータは表1に示されている。

フルベンジアミドの吸収は比較的緩やかであった。雌雄間の血漿中濃度を比較すると、雌において若干緩やかな減衰が認められた。また、全血中濃度と血漿中濃度の差は時間が経つにつれて小さくなっていったことから、フルベンジアミドは血球中に若干分布することが考えられた。

雌雄とも高用量群では、低用量群の数倍の C_{max} が観察されたのみであり、フルベンジアミドの吸収はほとんど飽和しているものと考えられた。 (参照 2)

投与量		2 mg/k	g 体重		200 mg/kg 体重				
性別	左	雄 雌		左	隹	雌			
試料	血液	血漿	血液	血漿	血液	血漿	血液	血漿	
T _{max} (hr)	12	12	6	6	48	12	6-48	12	
C _{max} (µg/g)	0.182	0.233	0.142	0.196	0.5	0.5	0.5	0.4	
T _{1/2} (hr)	28.7	12.6	41.1	37.6	NA	NA	NA	NA	
AUC (hr · μg/g)	5.45	5.58	7.62	9.18	NA	NA	NA	NA	

表 1 全血及び血漿中薬物動態学的パラメータ

NA: データポイント数不足のため算出せず

b. 吸収率

胆汁中排泄試験 [1.(1)④ b.] における、投与後 48 時間の胆汁及び尿中に排泄された放射能並びに体内に残存した放射能の合計より、消化管からの吸収率は低用量の雄で少なくとも 23.5%、雌で少なくとも 34.1%と推定された。(参照 4)

② 分布

Fischer ラット(一群雌雄各 4 匹)に $[pht^{-14}C]$ フルベンジアミドを低用量若しくは高用量又は $[ani^{-14}C]$ フルベンジアミドを低用量でそれぞれ単回経口投与して、体内分布試験が実施された。

主要組織の残留放射能濃度は表2に示されている。

投与9時間後では、吸収部位である消化管(胃、小腸及び大腸)、肝臓、腎臓、 副腎、脂肪等に比較的高濃度の分布が認められた。投与168時間後では、全ての 臓器及び組織中放射能濃度は、定量限界付近にまで減衰しており、フルベンジア ミド及びその代謝物に蓄積性がないことが示唆された。(参照2)

表 2 主要組織の残留放射能濃度(µg/g)

投与量	標識体	性別	投与 9 時間後	投与 168 時間後
			肝臓(2.42)、副腎(1.90)、白色脂肪	肝臓(0.031)、白色脂肪(0.009)、副
			(1.42)、大腸(1.26)、腎臓(1.07)、小腸	腎(0.007)、腎臓(0.005)、その他
			(0.951)、骨髄(0.679)、心臓(0.676)、	(0.005 未満)
		雄	唾 液 腺 (0.606)、膵 臓 (0.603)、肺	
		仏田	(0.584)、胃(0.568)、甲状腺(0.566)、	
			脾 臓 (0.409)、胸 腺 (0.376)、筋 肉	
			(0.319)、下垂体(0.290)、その他	
	[pht-14C]		(0.28 未満)	
	フルベン		大腸(0.857)、肝臓(0.657)、白色脂肪	
	ジアミド		(0.536)、副腎(0.463)、小腸(0.227)、	
			胃 (0.188)、唾 液 腺 (0.182)、腎 臟	
			(0.178)、膵臓(0.159)、骨髄(0.157)、	
		雌	卵巣(0.155)、甲状腺(0.150)、心臓	
2			(0.143)、肺(0.136)、子宮(0.123)、脾	甲状腺(0.038)、肺(0.039)、心臓
mg/kg			臓 (0.114) 胸 腺 (0.097)、下 垂 体	(0.037)、胸腺(0.033)、子宫
体重			(0.090)、膀胱(0.072)、筋肉(0.070)、	(0.033)、脾臟(0.030)、膀胱
			その他(0.03 未満)	(0.026)、筋肉(0.023)、下垂体
				(0.020)、その他(0.01 未満)
		雄		肝臓(0.016)、腎臓(0.006)、膀胱
				(0.006)、白色脂肪(0.006)、その他
				(0.004 未満)
	[肝臓(0.555)、白色脂肪(0.440)、副
	[ani-14C]			腎(0.208)、骨髄(0.169)、小腸
	フルベン			(0.098)、卵巣(0.089)、膵臓
	ジアミド	雌		(0.085)、唾液腺(0.083)、甲状腺
		POLL		(0.082) 、腎臓(0.074)、大腸
				(0.066)、胃(0.064)、心臓(0.055)、
				子宮(0.053)、肺(0.052)、下垂体
				(0.045)、脾臟(0.045)、胸腺

				(0.044)、膀胱 (0.033)、その他 (0.02 未満)
200	[pht-14C]	雄	大腸(60.2)、胃(28.1)、小腸(7.9)、下垂体(3.1)、白色脂肪(2.6)、副腎(2.4)、肝臓(2.2)、甲状腺(1.4)、腎臓(1.1)、唾液腺(1.1)、骨髄(0.9)、胸腺(0.8)、精巣(0.8)、前立腺(0.8)、心臓(0.7)、肺(0.6)、脾臓(0.6)、膵臓(0.6)、	肝臓(0.1)、白色脂肪(0.1)、その他
mg/kg 体重	フルベン ジアミド	雌	大腸(103)、胃(12.5)、白色脂肪(4.8)、 小腸(4.2)、肝臓(3.8)、副腎(3.4)、子 宮(3.2)、甲状腺(2.5)、唾液腺(2.4)、 膵臓(1.5)、骨髄(1.5)、腎臓(1.3)、心 臓(1.0)、肺(1.0)、脾臓(1.0)、胸腺 (0.9)、卵巣(0.9)、筋肉(0.6)、膀胱 (0.5)、その他(0.5 未満)	(0.3)、唾液腺(0.2)、膵臓(0.2)、腎臓(0.1)、胃(0.1)、小腸(0.1)、大腸

注)消化管(胃、小腸及び大腸)は内容物を除いて測定

/:試料採取せず

③ 代謝

尿及び糞中排泄試験 [1.(1) ② a.] で得られた投与後 72 時間(低用量)又は投与後 24 時間(高用量)の尿及び糞、並びに胆汁中排泄試験 [1.(1) ④ b.] で得られた投与後 48 時間の胆汁、糞及び消化管内容物を試料とした代謝試験が実施された。

尿、糞、胆汁及び消化管内容物における代謝物は表3に示されている。(参照2、4)

表3 尿、糞、胆汁及び消化管内容物における代謝物(%TAR)

投与量	標識体	性別	試料	フルベンジアミド	代謝物
			尿	0.01	E(0.45)、H(0.03)、F(0.01)、その他
		雄	%1 -		(0.84)
	[pht-14C]	4年	糞	15.4	E(37.3)、H(16.4)、F(0.44)、その他
	フルベン		異	10.4	(12.7#)
$\begin{vmatrix} & & \\ & 2 & \end{vmatrix}$	ジアミド		尿	0.09	E(0.05)、H(0.01)、F(<0.01)、その他
	シノミド	雌	水		(0.08)
mg/kg 体重			糞	65.8	E(5.43)、H(<0.01)、F(<0.01)、その他
半里					(4.74)
	[ani- ¹⁴ C] フルベン ジアミド		尿	0.04	E(0.42)、H(0.05)、F(0.03)、その他
		1-41-		0.04	(0.78)
		雄	**	20.4	E(30.8)、H(14.9)、F(0.31)、その他
			糞	30.4	(9.46#)

					1
			尿	0.21	E(0.05)、H(0.01)、F(<0.01)、その他 (0.11)
		雌			E(5.73)、H(0.13)、F(<0.01)、その他
			糞	65.7	(4.13)
					H(2.28) 、G(1.81) 、K-Glu(1.44) 、
					$E(1.27)$ 、 \mathcal{I} I
					-GSH(1.22), E/I-Glu(0.90), R(0.33),
			胆汁	_	フルベンジアミド-Cys-Gly(0.27)、フ
		雄			ルベンジアミド-Cys(0.27)、その他
		公正			(1.26)
			 糞	12.0	E(0.60)
	[pht-14C] フルベン		消化管		E(3.38)、その他(0.12)
			内容物	56.3	臣(0.50)、との同臣(0.12)
	ジアミド		胆汁	_	フルベンジアミド-Cys(1.42)、フルベ
		雌			ンジアミド-GSH(0.79)、フルベンジア
					₹ F-Cys-Gly(0.51)、G(0.19)、R(0.15)、
					E/I-Glu(0.11)、E(0.10)
			糞	10.7	E(0.09)
			消化管	49.7	E(0.59)
			内容物	43.1	
			 尿	0.04	E(0.01)、F(<0.01)、H(<0.01)、その他
		雄	///	0.04	(0.02)
200	$[\mathrm{pht^{-14}C}]$	Ψμ	糞	89.1	F(0.25)、E(0.20)、H(<0.01)、 その他
mg/kg	フルベン・ジアミド		<u> </u>		(0.27)
体重			 尿	< 0.01	E(<0.01)、F(<0.01)、H(<0.01)、その他
''		雌	<i>"</i> 1·		(0.04)
			糞	97.8	F(0.24)、E(<0.01)、H(<0.01)、その他
			,		(0.31)

注) -:検出されず

#:未同定代謝物の総和(個々の代謝物は 4%TAR 以下)

Glu: グルクロン酸抱合、GSH: グルタチオン抱合、Cys-Gly: システイニルグリシン抱合

Cys:システイン抱合

代謝物 Eの定量値: 一部代謝物 Iを含む、代謝物 Fの定量値: 一部代謝物 Gを含む、

代謝物 G の定量値:一部代謝物 F を含む

4 排泄

a. 尿及び糞中排泄

Fischer ラット(一群雌雄各 4 匹)に $[pht^{-14}C]$ フルベンジアミドを低用量若しくは高用量又は $[ani^{-14}C]$ フルベンジアミドを低用量でそれぞれ単回経口投与して、尿及び糞中排泄試験が実施された。

投与後24、72及び168時間の尿及び糞中排泄率は表4に示されている。 雌雄ともにほとんどが糞中排泄であった。(参照2)

表 4 尿及び糞中排泄率(%TAR)

標識体		[pht-14	C]フル	ベンジ	ベンジアミド				[ani-14C]フルベンジアミド			
投与量		2 mg/kg 体重				200 mg/kg 体重				2 mg/kg 体重			
性別	左	雄 雌		加	准	雌		雄		雌			
試料	尿	糞	尿	糞	尿	糞	尿	糞	尿	糞	尿	糞	
投与後 24 時間	1.3	77.0	0.2	58.2	0.1	89.9	0.1	98.5	1.2	79.0	0.3	54.5	
投与後 72 時間	1.6	94.8	0.3	81.0	0.1	93.5	0.1	99.3	1.5	92.6	0.5	79.6	
投与後 168 時間	1.8	96.2	0.6	91.4	0.5	93.6	0.6	99.6	1.7	93.6	1.1	91.5	

注) 投与後 168 時間の尿はケージ洗浄液を含む。

b. 胆汁中排泄

胆管カニューレを挿入した Fischer ラット(雄3匹、雌6匹)に[pht-14C]フルベンジアミドを低用量で単回経口投与して、胆汁中排泄試験が実施された。 投与後48時間の胆汁、尿及び糞中排泄率は表5に示されている。(参照4)

表 5 投与後 48 時間の胆汁、尿及び糞中排泄率 (%TAR)

投与量	2 mg/k	g 体重
性別	雄	雌
胆汁	11.1	3.3
尿	0.8	0.2
糞	12.8	11.0
肝臓	3.28	5.50
消化管	2.49	2.42
カーカス 1	5.92	22.8

注) 消化管内容物に雄で 60.4%TAR、雌で 50.6%TAR の放射能が認められた。

(2) ラット(反復経口投与)

① 血中濃度推移

Fischer ラット(一群雌雄各 4 匹)に[pht-14C]フルベンジアミドを低用量で 14日間反復経口投与して、血中濃度推移について検討された。

血中濃度の消失推移は単回経口投与における場合と同様であったが、雌では雄に比べ放射能濃度の消失が遅い傾向が認められた。(参照3)

② 分布

Fischer ラット(一群雌雄各 4 匹)に[pht-14C]フルベンジアミドを低用量で 14 日間反復経口投与して、体内分布試験が実施された。

18

¹ 組織・臓器を取り除いた残渣のことをカーカスという。

最終投与168時間後における主要組織の残留放射能濃度は表6に示されている。 フルベンジアミド又はその代謝物が残留する臓器及び組織は認められず、反復 投与においても、フルベンジアミド及び代謝物には蓄積性がないことが示された。 (参照3)

投与量	標識体	性別	最終投与 168 時間後
			下垂体(0.189)、白色脂肪(0.048)、肝臓(0.038)、甲状腺(0.031)、
		雄	前立腺(0.021)、副腎(0.018)、腎臓(0.017)、脾臓(0.012)、肺(0.011)、
			その他(0.009 以下)
2 mg/kg	[pht-14C]		白色脂肪(1.71)、肝臓(1.64)、副腎(0.603)、骨髄(0.457)、小腸

主要組織の残留放射能濃度(µg/g) 表 6

雌

③ 代謝

体重

[pht-14C]フルベンジアミドを用いた尿及び糞中排泄試験 [1.(2)④ a.] で得ら れた最終投与後72時間の尿及び糞を試料とした代謝試験が実施された。

(0.317)、膵臓(0.273)、腎臓(0.248)、唾液腺(0.241)、卵巣(0.230)、

胃(0.215)、大腸(0.211)、甲状腺(0.198)、肺(0.194)、心臓(0.188)、 胸腺(0.152)、脾臟(0.151)、骨(0.107)、子宮(0.105)、膀胱(0.100)、 下垂体(0.098)、筋肉(0.082)、血漿(0.034)、その他(0.028 以下)

糞中においては未変化のフルベンジアミドが 82.2%TAR~91.3%TAR を占め、 ほかに代謝物 E が 2.2%TAR~7.2%TAR、H が<0.01%TAR~2.8%TAR 認めら れた。そのほかに未同定代謝物が検出されたが、1%TAR未満と微量であった。 尿中には 0.2%TAR~0.5%TAR しか排泄されず、未変化のフルベンジアミド及び 代謝物Eが検出された。

最終投与24時間後の脂肪中未変化体及び代謝物の分析が実施された結果、フ ルベンジアミドが雌で 94.9%TRR、雄で 52.5%TRR 並びに代謝物 E(I 含む)、 F及びPがそれぞれ最大で13.3%TRR、14.4%TRR 及び3.3%TRR 認められた。 (参照 3、73、77、80)

ラットにおけるフルベンジアミドの主要代謝経路は、トルイジン環2位メチル 基の酸化による代謝物 E の生成及びチオアルキルアミン部分のメチル基の酸化 による代謝物Iの生成であると推定された。これらの代謝物はさらにグルクロン 酸抱合を受けた。また、フルベンジアミドのグルタチオン抱合もみられた。脂肪 においては、アミド結合の開裂及び閉環によるフタルイミド誘導体(代謝物 P) が認められた。

注)消化管(胃、小腸及び大腸)は内容物を除いて測定

4 排泄

a. 尿及び糞中排泄

Fischer ラット(一群雌雄各 4 匹)に[pht-14C]フルベンジアミドを低用量で 14日間反復経口投与して、尿及び糞中排泄試験が実施された。

最終投与後24及び168時間の尿及び糞中排泄率は表7に示されている。 雌雄ともにほとんどが糞中に排泄された。(参照3)

27 77770 52 1 3772 1 7777117								
投与量	2 mg/kg 体重							
性別	雄 雌							
試料	尿	糞	尿	糞				
最終投与後 24 時間	0.48	102	0.20	101				
最終投与後 168 時間	0.57	103	0.31	104				

表 7 尿及び糞中排泄率(%TAR)

(3) ラット及びマウス (反復経口投与)

Fischer ラット及び ICR マウス(一群雌雄各 $3\sim4$ 匹)にフルベンジアミドを 200~mg/kg 体重で 1、7 及び 14 日間反復経口投与し、それぞれ投与 24 時間後に と殺し、血漿、肝臓及び脂肪を採取して、各試料中におけるフルベンジアミド及 び代謝物 P の濃度が測定された。

血漿及び組織中フルベンジアミド及び代謝物 P の濃度は表 8 に示されている。 (参照 73、77、81)

動物	物種			ラット					マウス					
性	:別			雄			雌		雄			雌		
 試料			血漿	肝臓	脂肪									
フルベン	投与	1	0.1	1.8	7.9	0.9	19.0	46.5	0.2	2.8	8.2	0.1	1.9	1.9
フルベン ジアミド	期間	7	0.1	1.3	8.9	1.2	26.7	68.0	0.1	2.3	3.4	0.1	2.4	1.9
	(目)	14	<0.1	0.7	5.4	1.4	27.4	64.7	0.2	3.5	4.8	0.1	3.3	3.1
	投与	1	<0.1	<1.0	<1.0	<0.1	<0.1	<1.0	<0.1	<1.0	<1.0	<0.1	<1.0	<1.0
代謝物 P	期間	7	<0.1	<1.0	2.9	<0.1	<0.1	2.9	0.2	<1.0	<1.0	<0.1	<1.0	<1.0
	(目)	14	<0.1	<1.0	2.8	<0.1	<0.1	3.7	<0.1	<1.0	<1.0	<0.1	<1.0	<1.0

表 8 血漿及び組織中フルベンジアミド及び代謝物 P の濃度(μg/ml 又はμg/g)

(4) 泌乳ヤギ

泌乳ヤギ(系統不明、一群 1 頭)に $[pht^{-14}C]$ フルベンジアミドを 4.83~mg/kg 体重/日(176mg/kg 飼料相当)又は $[ani^{-14}C]$ フルベンジアミドを 5~mg/kg 体重/日(370mg/kg 飼料相当)の用量でそれぞれ 1 日 1 回、4 日間経口投与した。乳汁は毎回投与直前の朝に、尿及び糞は 24~時間間隔で採取し、肝臓、胆嚢、腎臓、

注) 最終投与後 168 時間の尿はケージ洗浄液を含む。

筋肉及び脂肪を最終投与後のと殺時(初回投与から 77 時間後)に採取して、動物体内運命試験が実施された。

[pht-14C]フルベンジアミド投与群において、と殺時までに臓器・組織、乳汁、尿及び糞中に 53.7%TAR が回収された。そのうち大部分(44.2%TAR)の放射能は糞中に認められ、ほかに臓器・組織に 8.7%TAR、乳汁中に 0.5%TAR が認められた。残留放射能濃度は脂肪($9.9~\mu g/g$)及び肝臓($10.1~\mu g/g$)で高く、次いで腎臓に $2.4~\mu g/g$ 、筋肉に $0.83~\mu g/g$ 及び乳汁に $0.70~\mu g/g$ 認められた。残留放射能の成分として、未変化のフルベンジアミドが 78.3%TRR~90.6%TRR を占めた。代謝物 P が乳汁及び各組織中に検出され、残留放射能濃度は脂肪($1.0~\mu g/g$: 11%TRR)及び肝臓($0.24~\mu g/g$: 2.4%TRR)で高かった。肝臓中には、ほかに 5%TRR 未満の 6 種類の代謝物が検出された。

[ani-14C] フルベンジアミド投与群では、と殺時までに 25%TAR が排泄され、そのうち 24%TAR は糞中へ排泄された。乳汁中には 0.4%TAR、組織中には 15%TAR の放射能が認められた。残留放射能濃度は、脂肪($21~\mu g/g$)で最も高く、次いで肝臓に $13.5~\mu g/g$ 、腎臓に $4.4~\mu g/g$ 、筋肉に $1.5~\mu g/g$ 及び乳汁に $1.5~\mu g/g$ 認められた。残留放射能の成分として、未変化のフルベンジアミドが 72%TRR ~93%TRR を占めた。主要代謝物は P であり、乳汁に 17%TRR($0.24~\mu g/g$)、脂肪に 24%TRR($5~\mu g/g$)及び筋肉に 8.4%TRR($0.13~\mu g/g$)認められた。ほかに検出された代謝物はいずれも 6%TRR 未満であった。(参照 73、75、76)

(5) 産卵鶏

産卵鶏(系統不明、一群 6 羽)に[pht-¹⁴C]フルベンジアミドを 1.0 mg/kg 体重/日(17.0 mg/kg 飼料相当)又は[ani-¹⁴C]フルベンジアミドを 0.71 mg/kg 体重/日(8.86 mg/kg 飼料相当)の用量でそれぞれ 14 日間経口投与し、卵及び排泄物は投与期間中 1 日 1 回採取し、肝臓、胆嚢、腎臓、筋肉、皮膚、脂肪及び卵を最終投与 24 時間後のと殺時に採取して、動物体内運命試験が実施された。

[pht-14C]フルベンジアミド及び[ani-14C]フルベンジアミド投与群の臓器・組織、卵及び排泄物中から、それぞれ約 91%TAR 及び 98%TAR が回収された。大部分の放射能は排泄物中に認められ(62%TAR~66%TAR)、組織に 24.4%TAR、卵に 5.1%TAR~7.7%TAR 認められた。残留放射能濃度は、脂肪($12.2\sim18$ μ g/g)で最も高く、次いで肝臓($3.0\sim4.0$ μ g/g)及び筋肉($2.6\sim2.9$ μ g/g)の順であった。卵中放射能濃度は、投与開始から 4 日間は $0.15\sim0.33$ μ g/g、その後投与終了時まで $2.6\sim2.9$ μ g/g 認められた。

残留放射能の成分として、未変化のフルベンジアミドが卵で 92%TRR~93%TRR、筋肉で95%TRR、脂肪で97%TRR~98%TRR、肝臓で82%TRR を占めた。代謝物 E が卵及び組織中に認められたが、10%TRR 未満であった。また、代謝物 P が $[pht^{-14}C]$ フルベンジアミド投与後の卵及び組織中に痕跡程度検出され、 $[ani^{-14}C]$ フルベンジアミド投与後の脂肪中に 1.6%TRR(0.20 $\mu g/g$)認めら

れた。 (参照 73、75、76)

泌乳ヤギ及び産卵鶏における主要代謝経路は、メチル基の一連の酸化反応による水酸化体及びカルボン酸体の生成とそれに続くグルクロン酸抱合体の生成であり、また、アミド結合の開裂及び閉環によるフタルイミド誘導体(代謝物 P)の生成も主に泌乳ヤギでみられた。

2. 植物体内運命試験

(1) りんご

りんご (品種: ふじ) に $[pht^{-14}C]$ フルベンジアミド又は $[ani^{-14}C]$ フルベンジアミドを 200 g ai/ha で散布し、散布 0、7、14、28 及び 56 日後(成熟期)に採取された果実及び葉を試料とした植物体内運命試験が実施された。

りんご試料中放射能濃度は表りに示されている。

総残留放射能濃度は、果実及び葉のいずれも処理当日に最高値を示し、その後は経時的に漸減した。

果実では、未変化のフルベンジアミド及び代謝物 B のほか、未同定代謝物が処理直後に 6.3%TRR 未満(0.002 mg/kg 未満)、処理 56 日後に 18.2%TRR 未満(0.002 mg/kg 未満)検出された。

葉では、未変化のフルベンジアミド並びに代謝物 B、C、E、H、P 及び Q のほか、未同定代謝物が処理直後で 0.5%TRR~3.1%TRR $(0.024\sim0.139$ mg/kg)、処理 56 日後で 1.6%TRR~13.0%TRR $(0.021\sim0.188$ mg/kg) 検出された。 (参照 5)

表 9 りんご試料中放射能濃度

[교생시].		[pht-14C]フルベンジアミド								
標識体				<u>-14C]フル</u>	ベンシア					
試料		果	実							
	0	日	56 日		0	日	56 日			
光光	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg		
総残留放射能	100	0.016	100	0.011	100	4.51	100	1.44		
フルベンジ アミド	93.8	0.015	54.5	0.006	106	4.76	52.9	0.763		
В	-	-	<18.2	< 0.002	0.8	0.035	7.2	0.104		
C	-	-	-	-	-	-	0.7	0.010		
E	-	-	-	-	0.1	0.004	2.1	0.031		
H	-	-	-	-	0.4	0.017	3.5	0.050		
P	-	-	-	-	0.2	0.011	-	-		
Q	-	-	-	-	-	-	2.1	0.030		
標識体			[ani-	·14 C]フル	ベンジア	ミド				
試料		果	実		葉					
処理後日数	0	日	56	日	0 日		56 日			
光理饭日数	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg		
総残留放射能	100	0.043	100	0.010	100	4.45	100	1.64		
フルベンジ アミド	81.4	0.035	50.0	0.005	104	4.61	62.4	1.03		
В	<4.7	< 0.002	<10.0	< 0.001	1.5	0.069	6.9	0.114		
C	-	-	-	-	-	-	4.4	0.072		
E	-	-	-	-	0.3	0.013	2.6	0.043		
Н	-	-	-	-	0.3	0.013	3.3	0.054		
P	-	-	-	-	2.3	0.103	-	-		

-: 検出限界以下

(2) キャベツ

キャベツ(品種:YR-晴徳)に $[pht^{-14}C]$ フルベンジアミド又は $[ani^{-14}C]$ フルベンジアミドを1個体当たり 0.3 mg で葉面全体に塗布処理し、処理 21 及び 42 日後(成熟期)に植物体を結球部、外葉部及び根部の部位ごとに分割して採取された試料を用いた植物体内運命試験が実施された。

処理 21 及び 42 日後ともに、処理放射能のほとんど(101%TAR \sim 108%TAR)は外葉部で検出され、表面洗浄画分に 77.5%TRR 以上が検出された。

キャベツ外葉部における放射能濃度は表10に示されている。

外葉部では、未変化のフルベンジアミド並びに代謝物 B、C、E 及び H のほか、 未同定代謝物が 0.2%TRR 以下(0.012 mg/kg 以下)検出された。

結球中の放射能濃度は低く、0.001 mg/kg 以下であった。 (参照 6)

表 10 キャベツ外葉部における放射能濃度

試料	[pht-	[pht-14C]フルベンジアミド				[ani-¹⁴C]フルベンジアミド			
加加州公司米佐	21 日		42	42 日		21 日		日	
<u></u> 処理後日数	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	
総残留放射能	100	0.59	100	0.59	100	0.70	100	0.61	
フルベンジ アミド	90.2	0.53	90.2	0.54	90.7	0.64	89.3	0.54	
В	1.3	0.008	1.5	0.009	1.3	0.009	1.5	0.009	
С	0.7	0.004	1.3	0.008	1.0	0.007	1.5	0.009	
E	0.3	0.002	0.5	0.003	0.4	0.003	0.7	0.005	
Н	0.1	0.001	0.3	0.002	0.2	0.002	0.5	0.003	

(3) トマト

ミニトマト (品種:千果) に、 $[pht^{-14}C]$ フルベンジアミド又は $[ani^{-14}C]$ フルベンジアミドを果実に 1 枝当たり 0.125 mg、葉に 1 枝当たり 0.80 mg で塗布処理し、処理 0、7、14 及び 28 日後に採取された処理部位の果実及び葉、処理 28 日後ではその他の部位全体(根部を含む。)を試料として採取し、植物体内運命試験が実施された。

放射能は、果実では処理直後の 99.1%TAR~99.3%TAR (3.24~3.38 mg/kg) から処理 28 日後の 65.9%TAR~68.7%TAR (1.32~1.49 mg/kg) と緩やかに減少した。葉では、いずれの時期においても 89.9%TAR~106%TAR (14.9~45.4 mg/kg) とほぼ定量的に回収された。処理 28 日後におけるその他の部位全体への分布は、1.1%TAR²と僅かであった。果実及び葉とも、表面洗浄液に 94.4%TRR 以上が検出された。

トマト果実及び葉における放射能濃度は表11に示されている。

果実では、処理直後に未変化のフルベンジアミド及び代謝物 C が検出されたほか、未同定代謝物が総和で $0.43\%TRR \sim 0.46\%TRR$ ($0.0146 \sim 0.0150$ mg/kg) 検出された。 [pht-14C]フルベンジアミド処理区では更に代謝物 B が検出された。 処理 28 日後には、未変化のフルベンジアミド並びに代謝物 B、C、E 及び H が検出されたほか、未同定代謝物が合計で 2.3%TRR ($0.0306 \sim 0.0336$ mg/kg) 検出された。

葉では、処理直後に未変化のフルベンジアミドが検出されたほか、未同定代謝物が 0.83%TRR \sim 0.84%TRR ($0.365\sim$ 0.381 mg/kg) 検出された。[pht-14C]フルベンジアミド処理区ではさらに代謝物 B 及び C が検出された。処理 28 日後では、未変化のフルベンジアミド並びに代謝物 B、C、E、H 及び N が検出された。(参照 7)

-

² その他の部位における放射能量は、果実及び葉への処理放射能量の合計に対する割合。

表 11 トマト試料中放射能濃度

標識体			[pht	·14 C]フル	ベンジアミド					
試料		果	実			芗				
処理後日数	0	日	28 日		0 日		28 日			
处理货口数	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg		
総残留放射能	100	3.24	100	1.32	100	44.1	100	16.5		
フルベンジ アミド	99.5	3.22	96.2	1.27	99.1	43.7	90.9	15.0		
В	0.05	0.0016	0.50	0.0066	0.04	0.0165	0.53	0.087		
C	0.04	0.0013	0.23	0.003	0.05	0.0022	0.24	0.039		
E	-	-	0.38	0.005	-	-	0.40	0.066		
HH	-	-	0.26	0.0034	-	-	0.33	0.055		
N	-	-	0.07	0.0009	-	-	0.10	0.017		
標識体			[ani	·14 C]フル	ベンジア	ミド				
試料		果	実		葉					
 処理後日数	0	日	28 日		0 日		28 日			
发生技 I 数	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg		
総残留放射能	100	3.38	100	1.49	100	45.4	100	14.9		
フルベンジ アミド	99.5	3.36	96.6	1.43	99.1	45.0	95.2	14.2		
В	-	-	0.32	0.0048	-	-	0.36	0.054		
C	0.04	0.0012	0.18	0.0027	-	-	0.20	0.030		
E	_	-	0.32	0.0048	<u>-</u>	-	0.32	0.0478		
Н	-	-	0.29	0.0043	-	-	0.36	0.053		

-: 検出限界以下

(4) 水稲

出穂直前の水稲(品種:日本晴)に[pht-14C]フルベンジアミドを100 g ai/haで散布し、処理直後、4及び9週後(成熟期)に種子、茎葉及び根部試料を採取して植物体内運命試験が実施された。また、9週後の試料として、一旦地上部を自然乾燥させたのち採取された試料も用いられた。

水稲試料中放射能濃度は表 12 に示されている。

残留放射能の大部分は茎葉部に認められ、種子(籾)及び根部の放射能残留は、それぞれ 0.053%TRR 及び 0.008%TRR と低レベルであった。また、成熟籾を玄米及び籾殻に分画した場合、玄米への放射能の移行はさらに低かった (0.001%TRR)。茎葉部の放射能は、表面洗浄液に 69.2%TRR 以上が検出された。

代謝物分析の結果、試料採取時期及び部位を問わず、88.8%TRR以上が未変化のフルベンジアミドであり、代謝物 B、C、E 及び H が僅かに検出されたが、10%TRRを超える代謝物は認められなかった。(参照 61)

表 12 水稲試料中放射能濃度

採取時期	処理直後		4 週		9 週		9 週(乾燥後)			
\lambda 4=	茎葉部		茎葉部		茎葉部		茎葉部		籾殻	
試料	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
総残留放射能	100	2.12	100	0.623	100	1.41	100	3.04	100	0.052
フルベンジ アミド	100	2.12	95.7	0.596	95.4	1.34	92.9	2.82	88.8	0.046
В	-	-	3.1	0.019	2.9	0.041	4.1	0.126	4.0	0.002
C	-	-	0.3	0.002	0.5	0.007	0.5	0.014	-	-
E	-	-	0.1	0.001	0.3	0.004	0.5	0.014	-	-
Н	-	-	-	-	0.1	0.001	0.1	0.004	-	-

-:検出限界以下

(5) とうもろこし

とうもろこし (品種: 不明) の雄穂抽出期 (BBCH59) に $[pht^{-14}C]$ フルベンジアミド又は $[ani^{-14}C]$ フルベンジアミドを 1 個体当たり 14.7 mg で 7 日間隔で 4 回葉面全体に塗布処理し、最終処理 1 日 (BBCH73-75/乳熟期) 及び 22 日 (BBCH97/成熟期) 後に雌穂及び茎葉部を採取して、植物体内運命試験が実施された。

とうもろこし試料中放射能濃度は表13に示されている。

いずれの標識体を処理した場合においても、茎葉部で顕著な残留放射能が検出されたが、スイートコーンあるいは完熟種子における放射能は低値(スイートコーン:0.001~0.010 mg/kg、完熟種子:0.003~0.016 mg/kg)であった。

茎葉部のアセトニトリル/水抽出画分における代謝物分析の結果、採取時期及び標識位置にかかわらず 68%TRR 以上が未変化のフルベンジアミドであり、10%TRR を超える代謝物として B が検出された。(参照 62)

表 13 とうもろこし茎葉部中放射能濃度

標識体	[ph	t-14C]フル	ベンジア	ミド	[ani-¹⁴C]フルベンジアミド			
加加尔	1 日		22 日		1 日		22 日	
<u></u> 処理後日数	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
総残留放射能	100	0.288	100	0.476	100	0.599	100	0.379
フルベンジ	7.4	0.010	CO	0.204	9.0	0.519	01	0.200
アミド	74	0.212	68	0.324	86	0.513	81	0.308
В	18	0.050	8	0.036	5	0.029	9	0.037

(6) 後作物

土壌に[pht-14C]フルベンジアミド又は[ani-14C]フルベンジアミドを 440 g

ai/ha の用量で散布処理し、29、135 及び 274 日後に、それぞれ春小麦、ふだんそう及びかぶを作付けして植物体内運命試験が実施された。

[pht-14C]フルベンジアミド処理後、残留放射能濃度は1作目の小麦(わら:0.07 mg/kg) で最も高く、3作目で0.05 mg/kg に低下した。小麦(青刈り)は0.013 から0.016 mg/kg に増加し、小麦(穀粒)はほぼ一定であった(0.003 mg/kg)。 ふだんそうは、0.022 から0.015 mg/kg に低下した。かぶでは、葉部及び根部は1作目でそれぞれ0.011 及び0.006 mg/kg であり、その後はほぼ一定の濃度であった(葉部: $0.005\sim0.006$ mg/kg、根部:0.002 mg/kg)。

[ani-14C]フルベンジアミド処理後、残留放射能濃度は1作目の小麦(わら:0.137 mg/kg) で最も高く、2 及び 3 作目ではそれぞれ 0.068 及び 0.039 mg/kg に低下した。小麦(干し草)では1作目の 0.045 mg/kg から 3 作目で 0.021 mg/kg に低下した。小麦(青刈り)及びふだんそうは作付け期間中 $0.009\sim0.019$ mg/kg であり、小麦(穀粒)、かぶ(葉部)及びかぶ(根部)は 0.006 mg/kg 以下であった。

各試料中放射能の主要成分は、小麦(穀粒)を除き未変化のフルベンジアミドであり(22%TRR~88%TRR)、小麦(わら)で最大 0.10~mg/kg、可食部においてはふだんそうで最大 0.015~mg/kg 認められた。小麦(穀粒)では 1~作目で 4%TRR~8%TRR(0.001~mg/kg 未満)が未変化のフルベンジアミドであり、その後は 0.5%TRR に低下した。

主要代謝物として、B がふだんそうの 2 作目で 8.0%TRR(0.002 mg/kg)、代謝物 U が小麦(干し草)、小麦(わら)、ふだんそう及びかぶ(葉部)の 2 又は 3 作目で 12.7%TRR~20.7%TRR(0.001~0.01 mg/kg)認められた。ほかに、代謝物 E 及び H が最大で 1.2%TRR 及び 1.4%TRR(いずれも 0.001 mg/kg)認められた。(参照 73、75、76)

植物体内におけるフルベンジアミドの主要代謝経路は、光分解によりョウ素原子が脱離した代謝物 B 及び C の生成、トルイジン環メチル基の酸化による代謝物 E 及び H の生成と考えられた。

3. 土壤中運命試験

(1)好気的土壌中運命試験

[pht-14C]フルベンジアミド又は[ani-14C]フルベンジアミドを埴壌土(高知)に 約 0.4 mg/kg 乾土となるように添加後、25^{\circ}Cの暗条件下で 180 日間インキュベートして、好気的土壌中運命試験が実施された。

未変化のフルベンジアミドは、処理 56 日後で 98.9%TAR \sim 100%TAR、試験終了時(処理 180 日後)で 98.0%TAR \sim 99.0%TAR 検出された。微量ではあるが、分解物 B、E 及び H が試験終了時にそれぞれ 0.2%TAR、0.2%TAR \sim 0.4%TAR 及び 0.4%TAR \sim 0.7%TAR 検出された。

フルベンジアミドの分解は極めて緩やかであり、推定半減期は 180 日以上であった。 (参照 8)

(2)土壤表面光分解試験

[pht-14C]フルベンジアミド又は[ani-14C]フルベンジアミドを砂土(米国カリフォルニア州)で調製した厚さ $1\sim2\,$ mm の土壌薄層に、 $1.3\,$ μ g/g 乾土となるように添加後、20°C ±1 °C でキセノンアークランプ(光強度: $583\,$ W/m²、波長: $300\,$ $\sim800\,$ nm)を $11\,$ 日間連続照射して土壌表面光分解試験が実施された。

光照射区において、フルベンジアミドは経時的に減少し、処理 11 日後には 47.9%TAR \sim 49.7%TAR になった。また、分解物 B 及び M がそれぞれ 15.5%TAR \sim 17.6%TAR 及び 1.5%TAR \sim 8.2%TAR 検出された。暗所対照区では、処理 11 日後においてもフルベンジアミドはほとんど分解されず、92.6%TAR \sim 99.9%TAR が残存していた。

フルベンジアミドの推定半減期は、本試験条件下では $11.0\sim11.4$ 日、米国における太陽光下では $33.6\sim34.9$ 日と換算 3 された。

土壌表面において、フルベンジアミドは速やかに分解物 B へ分解されることが示された。また、分解物 B も土壌中では安定ではなく、分解物 M を経由し速やかに CO_2 及び未抽出残渣にまで分解されることが示された。(参照 9)

(3)土壤吸脱着試験

4種類の国内土壌 [軽埴土(高知)、壌土(北海道)、軽埴土(和歌山)及び砂土(宮崎)]を用いた土壌吸脱着試験が実施された。

Freundlich の吸着係数 K^{ads} は $26.9\sim54.6$ であり、有機炭素含有率により補正した吸着係数 K_{oc} は $1,550\sim3,660$ であった。また、脱着係数 K^{des} は $36.2\sim52.1$ であった。

フルベンジアミドは、土壌において僅かな移行性があると考えられた。(参照 10)

4. 水中運命試験

(1)加水分解試験

[pht-14C] フルベンジアミド又は[ani-14C] フルベンジアミドを pH 4(酢酸緩衝液)、pH 5(酢酸緩衝液、25^{\circ}C試験区のみ)、pH 7(リン酸緩衝液)及び pH 9(ホウ酸緩衝液)の各緩衝液に $12.1~\mu g/L$ となるように加えた後、25^{\circ}Cで 30 日間又は 50^{\circ}Cで 5 日間インキュベートして、加水分解試験が実施された。

各処理区において、未変化のフルベンジアミドは90.5%TAR~101%TAR 回収された。フルベンジアミドは、本試験条件下で加水分解に対し安定であった。(参

³ 米国の隣接する 48 州の年間平均の太陽光強度 190 W/m² を基準として換算した。

照 11)

(2) 水中光分解試験

[pht-14C]フルベンジアミド又は[ani-14C]フルベンジアミドを蒸留水 (pH 6.0~6.2)、自然水(地下水(大阪)、pH 7.4)及び光増感剤として 1%アセトンを含有する蒸留水(いずれの試験水も滅菌後に使用)に 12.5 μ g/L となるように加えた後、25℃でキセノンアークランプ(光強度:623~640 W/m²、波長:280~800 nm)を 7 日間連続照射して、水中光分解試験が実施された。

フルベンジアミドは光照射により速やかに分解され、処理 7 日後に検出されたのは 31.3% TAR \sim 46.7% TAR であった。

光分解物としてはB、C 及びD が同定され、処理7 日後にはそれぞれ10.1%TAR $\sim 31.9\%$ TAR、0.6%TAR $\sim 2.2\%$ TAR 及び0.2%TAR $\sim 11.6\%$ TAR 検出された。

各水中の光照射区において、初期の主要分解物は B 及び C であり、C は後期に D へと分解されるものと推定された。暗所対照区においては、顕著な分解物は検出されなかった。

自然水中では、蒸留水中に比べ、フルベンジアミドの若干速やかな減衰が認められた。

フルベンジアミドの推定半減期は光照射区において $4.3\sim6.5$ 日であり、北緯 35 度(東京)春の自然太陽光下では $25.2\sim32.5$ 日と推定された。(参照 12)

5. 土壤残留試験

火山灰土・軽埴土(熊本)及び沖積土・埴壌土(高知)を用いて、フルベンジアミド並びに分解物 B、C 及び D (D の分析はほ場のみ)を分析対象化合物とした土壌残留試験(容器内及びほ場)が実施された。結果は表 14 に示されている。(参照 13)

			推定半減期			
試験	濃度**	土壌	フルベンジアミド	フルベンジアミド+		
			<i>//ພ <!-- 2/ ミト</i--></i>	分解物		
容器内	0.4/1	火山灰土・軽埴土	1年以上	1年以上		
試験	0.4 mg/kg	沖積土・埴壌土	1年以上	1年以上		
ほ場	200://	火山灰土・軽埴土	247 日	250 日		
試験	300 g ai/ha	沖積土・埴壌土	34 日	34 日		

表 14 土壌残留試験成績

[※]容器内試験で純品、ほ場試験で顆粒水和剤を使用

6. 作物等残留試験

(1) 作物残留試験

野菜、果実、豆類、茶等を用いて、フルベンジアミド並びに代謝物 B 及び C (Cの分析は国内のみ)を分析対象化合物とした作物残留試験が実施された。

国内での試験結果については別紙 3 に、海外での試験結果については別紙 4 に示されている。

国内で栽培されている農産物におけるフルベンジアミドの最大残留値は、最終散布7日後に収穫した茶(荒茶)の34.9 mg/kgであった。代謝物Bの最大残留値は、最終散布1日後に収穫したリーフレタスの0.20 mg/kgであったが、ほとんどの試料では定量限界未満であった。代謝物Cは全てが定量限界未満であった。海外で栽培されている農産物におけるフルベンジアミドの最大残留値は、最終散布1日後に収穫したほうれんそうの6.72 mg/kgであった。代謝物Bの最大残留値は、最終散布3及び7日後に収穫したマスタードグリーンの0.04 mg/kgであったが、ほとんどの試料では定量限界未満であった。(参照14、15、48、52、63、64、73、74)

(2)後作物残留試験

フルベンジアミドを 600 g ai/ha で 3 回散布して栽培したキャベツの後作物となるレタス及びだいこん (葉、根部) を用いて、フルベンジアミド並びに代謝物 B 及び C を分析対象化合物とした後作物残留試験が実施された。

結果は別紙 5 に示されており、いずれの作物でもフルベンジアミド並びに代謝物 B 及び C は定量限界未満であった。(参照 16)

(3) 畜産物残留試験

①産卵鶏

産卵鶏(系統不明、一群12羽)にフルベンジアミドを0.02、0.10及び0.50 mg/kg 飼料相当で28日間混餌投与し、フルベンジアミド及び代謝物Pを分析対象化合物とした畜産物残留試験が実施された。投与期間中卵は毎日採取し、最終投与1日後にと殺して、肝臓、脂肪、筋肉及び皮膚を採取して分析試料とした。また、別に0.50 mg/kg 飼料相当で28日間混餌投与の2群が設定され、投与終了14日後までの回復試験が実施された。

結果は別紙6に示されている。

卵におけるフルベンジアミドの最大残留値は $0.06~\mu g/g$ であり、代謝物 P は検出されなかった(検出限界: $0.003~\mu g/g$)。組織中におけるフルベンジアミド及び代謝物 P の最大残留値は脂肪で認められ、それぞれ $0.29~\mu g/g$ であった。

最終投与 14 日後の回復期間終了後、卵中にはフルベンジアミドは検出されず、脂肪組織中では $0.01 \mu g/g$ (3 例中 1 例)に低下した。(参照 73、75、76)

②泌乳牛

巡乳牛(品種:ホルスタイン種、一群3頭)にフルベンジアミドを2.5、7.5、30及び50 mg/kg 飼料相当の用量で29日間カプセル経口投与し、フルベンジアミド及び代謝物Pを分析対象化合物とした畜産物残留試験が実施された。投与期間中乳汁は1日2回採取し、最終投与後にと殺して肝臓、腎臓、筋肉及び脂肪を採取して分析試料とした。また、別に50 mg/kg 飼料相当投与群の2頭が設定され、29日間反復投与終了後21日までの回復試験が実施された。

結果は別紙6に示されている。

乳汁におけるフルベンジアミド及び代謝物 P の最大残留値はそれぞれ 0.16 及び $0.01~\mu g/g$ であった。組織中におけるフルベンジアミド及び代謝物 P の最大残留値は脂肪で認められ、それぞれ 1.2 及び $0.27~\mu g/g$ であった。

最終投与 21 日後に乳汁中のフルベンジアミドは $0.02~\mu g/g$ に、組織中では最終投与後の濃度の $23\%\sim32\%$ に低下した。(参照 73、75、76)

(4) 推定摂取量

別紙3の作物残留試験及び別紙6の畜産物残留試験の分析値を用いて、フルベンジアミドを暴露評価対象物質とした際に食品中から摂取される推定摂取量が表15に示されている。(別紙7参照)

なお、本推定摂取量の算定は、登録されている又は申請された使用方法からフルベンジアミドが最大の残留を示す使用条件で、全ての適用作物に使用され、加工・調理による残留農薬の増減が全くないとの仮定の下に行った。また、畜産物における推定摂取量の算定には各試料の最大値を用いた。

	DCHH 1 0. 7.	X-1X C 10 0 0 7 7		C1X-1X-
	国民平均	小児(1~6 歳)	妊婦	高齢者(65 歳以上)
	(体重:55.1kg)	(体重:16.5 kg)	(体重:58.5 kg)	(体重:56.1 kg)
摂取量 (μg/人/日)	559	240	512	670

表 15 食品中より摂取されるフルベンジアミドの推定摂取量

7. 一般薬理試験

マウス及びラットを用いた一般薬理試験が実施された。結果は表 16 に示されている。 (参照 17)

注) 畜産物における推定摂取量については、農薬登録の使用条件の範囲内での計算が困難であることから、試験結果のうち最大残留値を用いたため、農産物に比べて過大評価となっている可能性がある。

表 16 一般薬理試験概要

雪	 、験の種類	動物種	動物数 匹/群	投与量* (mg/kg 体重)	最大 無作用量 (mg/kg 体重)	最小作用量 (mg/kg 体重)	結果の概要
1 中	一般状態 (Irwin 法)	ICR マウス	雌雄各3	0,200,600, 2,000	2,000		投与による影響なし
枢神経	一般状態 (FOB)	SD ラット	雄 5	0,200,600, 2,000	2,000		投与による影響なし
A 系	睡眠時間	ICR マウス	雄 8	0,200,600, 2,000	2,000	_	投与による影響なし
循環器系	血圧・ 心拍数	SD ラット	雄 5	0,200,600, 2,000	2,000	_	投与による影響なし
消化器系	小腸 輸送能	ICR マウス	雄 8	0,200,600, 2,000	600	2,000	炭末輸送能の抑制が 認められた
腎臓	腎機能	SD ラット	雄 5	0,200,600, 2,000	2,000	_	投与による影響なし
血液	溶血と凝固	SD ラット	雄 5	0,200,600, 2,000	2,000		投与による影響なし

^{*:} いずれの試験においてもフルベンジアミド原体を 0.5%CMC-Na 水溶液に懸濁した検体を経口投与した。

8 急性毒性試験

(1) 急性毒性試験

フルベンジアミドの急性毒性試験が実施された。

結果は表 17 に示されている。なお、急性吸入毒性試験では 0.07~mg/L が暴露可能な最高濃度であった。(参照 $18{\sim}20$)

表 17 急性毒性試験結果概要 (原体)

投与	利加托	LD_{50} (mg	/kg 体重)	知察された応任		
経路	動物種	雄	雌	観察された症状		
経口	SD ラット 雌雄各 5 匹	>2,000	>2,000	症状及び死亡例なし		
経皮	SD ラット 雌雄各 5 匹	>2,000	>2,000	症状及び死亡例なし		
HT7. →	SD ラット	LC_{50} (mg/L)			
吸入	雌雄各5匹	>0.07	>0.07	症状及び死亡例なし		

^{-:}最小作用量は求められなかった。

フルベンジアミドの代謝物 B 及び C の急性経口毒性試験が実施された。 結果は表 18 に示されている。代謝物 C において、投与 30 分後から軟便及び 肛門周囲の被毛汚染がみられたが、投与 1 日後には消失した。 (参照 21、22)

LD₅₀(mg/kg 体重) 被験物質 動物種 観察された症状 雄 SD ラット В >2,000 >2,000 症状及び死亡例なし 雌6匹 軟便及び肛門周囲の被毛汚染 SD ラット \mathbf{C} >2.000 >2.000雌6匹 死亡例なし

表 18 急性経口毒性試験結果概要 (代謝物)

(2) 急性神経毒性試験(ラット)

Fischer ラット(一群雌雄各 12 匹)を用いた強制経口(原体: 0、200、700 及び 2,000 mg/kg 体重)投与による急性神経毒性試験が実施された。

本試験において、いずれの投与群でも検体投与に関連した影響は認められなかったので、無毒性量は雌雄とも 2,000 mg/kg 体重であると考えられた。急性神経毒性は認められなかった。 (参照 65)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

日本白色種ウサギ(雄)を用いた眼刺激性試験及び皮膚刺激性試験が実施された。 皮膚刺激性は認められなかったが、軽度の眼刺激性が認められた。(参照 23、24) Hartley モルモット(雌)を用いた皮膚感作性試験(Maximization 法)が実施 された。皮膚感作性は認められなかった。(参照 25)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

Fischer ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、20、50、200、2000 及び 20,000 ppm: 平均検体摂取量は表 19 参照) 投与による 90 日間亜急性毒性試験が実施された。

		[] == .0. [= .	51 <u>—</u> 11. (5)	. , . , . ,	12411 324 124	
投与群		20 ppm	50 ppm	200 ppm	2,000 ppm	20,000 ppm
平均検体摂取量	雄	1.15	2.85	11.4	116	1,190
(mg/kg 体重/日)	雌	1.30	3.29	13.1	128	1,320

表 19 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

各投与群で認められた毒性所見は表 20 に示されている。

20,000 ppm 投与群の雌で散見された立ち上がり姿勢スコアの増加は、慢性毒性試験においてもほぼ同時期に観察されており、投与との関連は否定できないと判断したが、他の検査項目の変化を伴わないこの所見単独での軽微かつ一時的な変化について毒性学的意義を認めることは難しいと考えられた。

本試験において、2,000 ppm 以上投与群の雄で PLT 増加が、200 ppm 以上投与群の雌で小葉周辺性肝細胞脂肪化等が認められたので、無毒性量は雄で 200 ppm(11.4 mg/kg 体重/日)、雌で 50 ppm(3.29 mg/kg 体重/日)であると考えられた。(参照 26)

投与群	雄	雌
20,000 ppm	・MCV 減少	・MCH 減少
	・TP 及び Alb 増加	・TP 及び Alb 増加
	・肝絶対及び比重量 4増加	・Glob 増加、T.Chol 及び TBA 減少
		・副腎、卵巣絶対及び比重量増加
2,000 ppm	・PLT 増加	・PLT 増加、Ht 及び Hb 減少
以上		・GGT 及びカリウム増加、TG 減少、
		ChE 活性低下
		・腎絶対及び比重量増加
		・び漫性肝細胞肥大
		・甲状腺ろ胞上皮細胞肥大
200 ppm	200 ppm 以下毒性所見なし	・MCV 減少
以上		・肝絶対及び比重量増加
		・小葉周辺性肝細胞脂肪化
50 ppm 以下		毒性所見なし

表 20 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

(2)90日間亜急性毒性試験(マウス)

ICR マウス (一群雌雄各 10 匹) を用いた混餌 (原体:0、50、100、1,000 及び 10,000 ppm: 平均検体摂取量は表 21 参照) 投与による 90 日間亜急性毒性試験が実施された。なお、本試験は発がん性試験(マウス)の予備試験であり、試験ガイドラインには準拠していない。

投与群		50 ppm	100 ppm	1,000 ppm	10,000 ppm
平均検体摂取量	雄	6.01	11.9	123	1,210
(mg/kg 体重/日)	雌	7.13	14.7	145	1,420

表 21 90 日間亜急性毒性試験(マウス)の平均検体摂取量

各投与群で認められた毒性所見は表 22 に示されている。 本試験において、1,000 ppm 投与群以上の雌雄で小葉中心性肝細胞肥大等が認

-

⁴ 体重比重量を比重量という(以下同じ)。

められたので、無毒性量は雌雄とも $100 \, \mathrm{ppm}$ (雄: $11.9 \, \mathrm{mg/kg}$ 体重/日、雌: $14.7 \, \mathrm{mg/kg}$ 体重/日)であると考えられた。(参照 43)

表 22 90 日間亜急性毒性試験(マウス)で認められた毒性所見

投与群	雄	雌
10,000 ppm	・肝比重量増加	・T.Bil 増加
		・卵巣比重量増加
1,000 ppm	・小葉中心性肝細胞肥大	・肝絶対及び比重量増加
以上	• 小葉中心性肝細胞脂肪化	・小葉中心性肝細胞肥大
		・小葉中心性肝細胞脂肪化
100 ppm	毒性所見なし	毒性所見なし
以下		

(3)90日間亜急性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体: 0、100、2,000 及び 40,000 ppm: 平均検体摂取量は表 23 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 23 90 日間亜急性毒性試験 (イヌ) の平均検体摂取量

投与群		100 ppm	2,000 ppm	40,000 ppm
平均検体摂取量	雄	2.58	52.7	1,080
(mg/kg 体重/日)	雌	2.82	59.7	1,140

各投与群で認められた毒性所見は表 24 に示されている。

40,000 ppm 投与群の雄でみられた軟便は検体投与の影響によるものと考えられたが、40,000 ppm 投与群の雌を含めた他の投与群でみられた軟便は、発生個体数が少なく、また、観察された週も少なかったことから、検体投与には関連しない症状であると考えられた。

40,000 ppm 投与群の雄の 2 例に肝臓の小肉芽腫が認められたが、この病変の程度は軽く、また、雌では用量に関連なく観察された所見であったため、検体投与とは関連しないものと考えられた。

本試験において、2,000 ppm 以上投与群の雌雄で副腎絶対及び比重量増加等が認められたので、無毒性量は雌雄とも 100 ppm(雄:2.58 mg/kg 体重/日、雌:2.82 mg/kg 体重/日)であると考えられた。(参照 27)

表 24 90 日間亜急性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
40,000 ppm	・軟便(投与1週以降)	
	・体重増加抑制	
	・ALP 増加、T.Chol 減少	
	・副腎皮質細胞肥大	
2,000 ppm	・APTT 短縮	・APTT 短縮
以上	・副腎絶対及び比重量増加	・ALP 及び TG 増加
		・副腎絶対及び比重量増加
		・副腎皮質細胞肥大
100 ppm	毒性所見なし	毒性所見なし

11. 慢性毒性試験及び発がん性試験

(1)1年間慢性毒性試験(ラット)

Fischer ラット (一群雌雄各 25 匹) を用いた混餌 (原体:0、20、50、2,000 及び 20,000 ppm: 平均検体摂取量は表 25 参照) 投与による 1 年間慢性毒性試験が実施された。

表 25 1年間慢性毒性試験 (ラット) の平均検体摂取量

投与群		20 ppm	50 ррт	2,000 ppm	20,000 ppm
平均検体摂取量	雄	0.781	1.95	79.3	822
(mg/kg体重/日)	雌	0.960	2.40	97.5	998

各投与群で認められた毒性所見は表 26 に示されている。

20,000 ppm 投与群の雌で散見された立ち上がり姿勢スコアの増加は、亜急性毒性試験においてもほぼ同時期に観察されており投与との関連は否定できないと判断したが、他の検査項目の変化を伴わないこの所見単独での軽微かつ一時的な変化について毒性学的意義を認めることは難しいと考えられた。

本試験において、2,000 ppm 以上投与群の雌雄で甲状腺ろ胞上皮細胞肥大等が認められたので、無毒性量は雌雄とも 50 ppm(雄:1.95 mg/kg 体重/日、雌:2.40 mg/kg 体重/日)であると考えられた。(参照 28)

表 26 1年間慢性毒性試験(ラット)で認められた毒性所見

	·	
投与群	雄	雌
20,000 ppm	・Ht、Hb、RBC、MCV 及び MCH 減	・卵巣絶対及び比重量増加
	少、PLT 増加	
	・TP 増加	
	・甲状腺絶対及び比重量増加	
2,000 ppm	・網状赤血球数増加、PT 及び APTT	・Ht、Hb、RBC、MCV 及び MCH 減
以上	延長	少
	・GGT 及び Alb 増加	・GGT、TP、Alb 及びリン増加
	・肝比重量増加	・TBA、T.Chol 及び TG 減少
	・甲状腺ろ胞上皮細胞肥大	・肝、腎及び心絶対及び比重量増加
		・副腎比重量増加
		・脾絶対及び比重量減少
		・甲状腺ろ胞上皮細胞肥大
		・小葉周辺性肝細胞脂肪化及びび漫性
		肝細胞肥大
50 ppm 以下	毒性所見なし	毒性所見なし

(2)1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、100、1,500 及び 20,000 ppm: 平均検体摂取量は表 27 参照) 投与による 1 年間慢性毒性試験が実施された。

表 27 1年間慢性毒性試験(イヌ)の平均検体摂取量

投与群	100 ppm	1,500 ppm	20,000 ppm	
平均検体摂取量雄		2.21	35.2	484
(mg/kg 体重/日) 雌		2.51	37.9	533

各投与群で認められた毒性所見は表 28 に示されている。

本試験において、1,500 ppm 以上投与群の雄で肝比重量増加等、雌で ALP 増加等が認められたので、無毒性量は雌雄とも 100 ppm (雄:2.21 mg/kg 体重/日、雌:2.51 mg/kg 体重/日)であると考えられた。 (参照 29)

表 28 1年間慢性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
20,000 ppm	・ALP 及び ALT 増加、Alb 及び	・体重増加抑制(0~52 週)
	A/G 比減少	・ALT、GGT 及び TG 増加、Glu 減少
	・肝クッパー細胞褐色色素沈着	・肝絶対重量増加
		・肝クッパー細胞褐色色素沈着
1,500 ppm	・体重増加抑制(0~52 週)	・APTT 短縮
以上	・APTT 短縮	・PLT 増加
	・ナトリウム減少	・ALP 増加
	・肝比重量増加	
100 ppm	毒性所見なし	毒性所見なし

(3)2年間発がん性試験(ラット)

Fischer ラット (一群雌雄各 50 匹) を用いた混餌 (原体:0、50、1,000 及び 20,000 ppm: 平均検体摂取量は表 29 参照) 投与による 2 年間発がん性試験が実施された。

表 29 2 年間発がん性試験 (ラット) の平均検体摂取量

投与群		50 ppm	1,000 ppm	20,000 ppm
平均検体摂取量 雄		1.70	33.9	705
(mg/kg 体重/日) 雌		2.15	43.7	912

各投与群で認められた毒性所見は表30に示されている。

腫瘍性病変において、対照群と投与群の間に発生頻度の有意な差は認められなかった。

本試験において、1,000 ppm 以上投与群の雌雄で小葉周辺性肝細胞脂肪化等が認められたので、無毒性量は雌雄で 50 ppm(雄:1.70 mg/kg 体重/日、雌:2.15 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 30)

表 30 2年間発がん性試験(ラット)で認められた毒性所見

投与群	雄	雌
20,000 ppm	・肝絶対及び比重量増加・甲状腺絶対重量増加・甲状腺ろ胞上皮細胞肥大	・体重増加抑制(投与 76 週以降) ・甲状腺、副腎及び卵巣絶対及び比重量増加
1,000 ppm 以上	小葉周辺性肝細胞脂肪化慢性腎症	・肝絶対及び比重量増加・腎比重量増加・脱毛・小葉周辺性肝細胞脂肪化、び漫性肝細胞脂肪化及びび漫性肝細胞肥大・慢性腎症・甲状腺ろ胞上皮細胞肥大・皮膚毛包炎
50 ppm	毒性所見なし	毒性所見なし

(4) 18 か月間発がん性試験(マウス)

ICR マウス (一群雌雄各 52 匹) を用いた混餌 (原体: 0、50、1,000 及び 10,000 ppm: 平均検体摂取量は表 31 参照) 投与による 18 か月間発がん性試験が実施された。

表 31 18 か月間発がん性試験(マウス)の平均検体摂取量

投与群		50 ppm	1,000 ppm	10,000 ppm
平均検体摂取量 雄		4.85	94	988
(mg/kg 体重/日) 雌		4.44	93	937

各投与群で認められた毒性所見は表 32 に示されている。

腫瘍性病変において、対照群と投与群の間に発生頻度の有意な差は認められなかった。

本試験において、1,000 ppm 以上投与群の雌雄で甲状腺ろ胞上皮細胞肥大等が認められたので、無毒性量は雌雄ともに 50 ppm(雄:4.85 mg/kg 体重/日、雌:4.44 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 31)

表 32 18 か月間発がん性試験(マウス)で認められた毒性所見

投与群	雄	雌
10,000 ppm	・肝、甲状腺及び副腎絶対及び比重量増加・甲状腺コロイド変性・変異肝細胞巣(空胞細胞及び好塩基性細胞)	• 小葉周辺性肝細胞脂肪化(大型脂肪 滴)
1,000 ppm 以上	・小葉中心性肝細胞肥大、小葉中心性 肝細胞脂肪化及びび漫性肝細胞脂肪 化(小型脂肪滴)・甲状腺水腫様変性を伴うろ胞上皮細 胞肥大及び大型ろ胞増加	・小葉中心性肝細胞肥大、小葉中心性 肝細胞脂肪化及びび漫性肝細胞脂肪
50 ppm	毒性所見なし	毒性所見なし

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

Wistar ラット (一群雌雄各 24 匹) を用いた混餌 (原体: 0、20、50、2,000 及び 20,000 ppm: 平均検体摂取量は表 33 参照) 投与による 2 世代繁殖試験が 実施された。

投与群 2,000 ppm 20,000 ppm 20 ppm 50 ppm 雄 1.30 3.30 131 1,310 P世代 平均検体摂取量 雌 1,580 1.593.95 159(mg/kg 体重/日) 雄 1.64 4.05162 1,640 F₁世代 雌 4.59 1,810 1.84 176

表 33 2世代繁殖試験(ラット)の平均検体摂取量

各投与群で認められた毒性所見は表34に示されている。

親動物において、2,000 及び 20,000 ppm 投与群の P 世代雌各 1 例が出産時に臨床症状を示すことなく死亡した。このうち 20,000 ppm 投与群の 1 例では、重度の肝細胞脂肪化及び塊状肝細胞壊死が認められたので、肝臓障害が死因の一つであったと考えられた。なお、追加実施された 1 世代繁殖試験 [12. (2)] の 20,000 ppm 投与群においても出産時死亡が認められたことから、20,000 ppm 投与群における死亡は検体投与に関連すると考えられたが、2,000 ppm 投与群での死亡は本試験のみで認められ、偶発的なものである可能性が高いと考えられた。

2,000 ppm 以上投与群の F_1 及び F_2 世代児動物で腫大が認められた眼球では、ほぼ全例に虹彩癒着が認められ、眼房水の流出阻害が眼球腫大に至ったと考えられた。また、これらの眼球では出血、角膜上皮基底細胞の水腫様変性、角膜上皮細胞の空胞化、角膜炎、虹彩炎及び白内障も観察された。

 F_1 世代児動物の雄において、50 ppm 以上投与群で包皮分離完了の遅延がみられ、対照群との間に有意差が認められた。しかし、50 及び 2,000 ppm 投与群の平均完了日(42.5 及び 43.0 日)は試験施設における同系統ラットの背景データ($40.9\sim43.4$ 日)の範囲内にあり、多重比較検定で解析した場合、平均完了日の有意な遅延は 2,000 ppm 以上投与群で認められ、50 ppm 投与群に有意差はなかった。また、追加実施された 1 世代繁殖試験においても、200 ppm 以下の投与群では包皮分離完了日に変動はみられなかったことから、50 ppm 投与群でみられた包皮分離完了の遅延は偶発的であると考えられた。

本試験において、親動物では 2,000 ppm 以上投与群の雌雄で甲状腺ろ胞上皮細胞肥大等が、児動物では 2,000 ppm 以上投与群の雌雄で肝絶対及び比重量増加等が認められたので、無毒性量は親動物及び児動物の雌雄で 50 ppm (P雄: 3.30 mg/kg 体重/日、P雌: 3.95 mg/kg 体重/日、 F_1 雄: 4.05 mg/kg 体重/日、 F_1 雌: 4.59 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 32)

(包皮分離完了遅延の検討については [12.(2)]、眼球腫大等の検討については [14.(3)、(5)~(7)]を参照)

表 34 2世代繁殖試験 (ラット) で認められた毒性所見

	北上兴	親 : P、児 : F ₁		親:F ₁ 、	児:F ₂
	投与群	雄	雌	雄	雌
	20,000 ppm	・肝及び甲状腺絶対及び比重量増加・副腎絶対重量増加	・肝胆管増生及び多核 肝細胞・副腎び漫性皮質細胞 肥大・卵巣間質細胞の空洞 化	び比重量増加 ・肝細胞脂肪化及び肝 細胞肥大	・子宮絶対重量増加 ・肝胆管増生
親動物	2,000 ppm 以上	・甲状腺ろ胞上皮細胞 肥大	・肝、甲状腺、腎及び 子宮絶対及び比重量 増加 ・副腎及び卵巣絶対重 量増加 ・脾比重量減少 ・肝細胞脂肪化、肝細 胞肥大及び肝褐色色 素沈着 ・甲状腺ろ胞上皮細胞 肥大 ・腎尿細管好塩基性化 及び尿円柱	・下垂体比重量減少 ・肝褐色色素沈着 ・甲状腺ろ胞上皮細胞 肥大	・肝、甲状腺及び腎絶 対及び比重量増加 ・脾絶対及び比重量減 少 ・下垂体比重量減少 ・肝細胞脂肪化、肝細 胞肥大及び肝褐色色 素沈着 ・甲状腺ろ胞上皮細胞 肥大
	50 ppm 以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし
	20,000 ppm	・体重増加抑制 ・甲状腺比重量増加 ・肝胆管増生	・体重増加抑制 ・胸腺絶対重量減少	・体重増加抑制 ・胸腺絶対重量減少 ・肝胆管増生	・体重増加抑制
児動物	2,000 ppm 以上	・包皮分離完了遅延 ・眼球腫大 ・肝絶対及び比重量増加 ・脾及び胸腺絶対及び 比重量減少 ・肝細胞脂肪化、肝細 胞肥大及び肝褐色色 素沈着 ・甲状腺ろ胞上皮細胞 肥大 ・虹彩癒着、出血、角 膜上皮基底細胞水腫 性変性、角膜上皮細 胞空胞化、角膜炎 虹彩炎及び白内障	·肝細胞脂肪化、肝細 胞肥大、肝褐色色素		·肝細胞脂肪化、肝細 胞肥大、肝褐色色素
	50 ppm 以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし

(2)1世代繁殖試験(ラット) <追加試験>

先に実施された 2 世代繁殖試験 [12. (1)] において、50 ppm 以上投与群の F_1 児動物雄で認められた包皮分離完了の遅延を再確認するため、Wistar ラット (一群雌雄各 24 匹) を用いた混餌 (原体:0、50、200、2,000 及び 20,000 ppm:

平均検体摂取量は表 35 参照)投与による 1 世代繁殖試験が実施された。 F_1 世代 親動物に関しては、雄で離乳後約 10 週間、雌で離乳後約 5 週間を試験期間とした。

表 35 1世代繁殖試験(ラット)の平均検体摂取量

投与群			50 ppm	200 ppm	2,000 ppm	20,000 ppm
	D III./IV	雄	3.25	12.9	127	1,290
平均検体摂取量	P世代	雌	3.84	15.0	149	1,490
(mg/kg 体重/日)	D ##./	雄	4.05	15.9	160	1,610
	F ₁ 世代	雌	5.28	21.0	206	2,090

各投与群で認められた毒性所見は表36に示されている。

2,000 ppm 以上投与群の F_1 児動物雄において包皮分離完了の遅延が認められたが、同世代雄動物で測定した肛門生殖突起間距離 (AGD) の短縮がなく、むしろこれらの群では大きい値を示しており、少なくとも検体が抗アンドロゲン作用によって性成熟を遅延させているのではないと考えられた。

本試験において、親動物では 2,000 ppm 以上投与群の雄で下垂体絶対及び比重量減少が、200 ppm 以上投与群の雌で腎絶対及び比重量増加等が認められ、児動物では 2,000 ppm 以上投与群の雌雄で肝絶対及び比重量増加等が認められたので、無毒性量は親動物の雄で 200 ppm (P 雄: 12.9 mg/kg 体重/H、 F_1 雄: 15.9 mg/kg 体重/H)、雌で 50 ppm (P 雌: 3.84 mg/kg 体重/H、H に 5.28 mg/kg 体重/H)、児動物で 200 ppm (H 雄: 12.9 mg/kg 体重/H、H に 15.0 mg/kg 体重/H)であると考えられた。繁殖能に対する影響は認められなかった。(参照 33)

(眼球腫大等の検討については [14.(3)、(5)~(7)]を参照)

表 36 1世代繁殖試験(ラット)で認められた毒性所見

	親:P、児:F ₁		親:F ₁		
	投与群	雄	雌	雄	雌
	20,000 ppm	・甲状腺腫大及び褐色 化 ・肝絶対及び比重量増 加	・甲状腺絶対及び比重 量増加	・肝暗調化 ・甲状腺褐色化 ・肝絶対及び比重量増 加	・肝腫大 ・甲状腺比重量増加
親動物	2,000 ppm 以上	2,000 ppm 以下 毒性所見なし	・肝腫大 ・甲状腺褐色化 ・肝絶対及び比重量増加 ・腎、卵巣及び子宮絶 対重量増加	・下垂体絶対及び比重 量減少	・肝暗調化 ・肝及び卵巣絶対及び 比重量増加
	200 ppm 以上		・肝暗調化	200 ppm 以下 毒性所見なし	・腎絶対及び比重量増加・下垂体絶対及び比重量減少
	50 ppm		毒性所見なし		毒性所見なし
	20,000 ppm	·眼球腫大 ·体重増加抑制 ·胸腺絶対重量減少	・眼球腫大 ・体重増加抑制 ・甲状腺絶対重量減少 ・角膜炎、角膜上皮基 底細胞の水腫様変性 及び角膜上皮細胞の 空胞化		
児動物	2,000 ppm 以上	・肛門生殖突起間距離 増加 ・包皮分離完了遅延 ・肝暗対及び比重量増 ・肝絶対及び比重量増 か ・脚絶対及び比重量減 少 ・甲状腺絶対重量減、角 膜炎、虹彩炎基血、白内 膜、角膜上皮細胞の空胞 化	・肝暗調化 ・肝絶対及び比重量増加 ・脾及び胸腺絶対及び 比重量減少 ・虹彩癒着、出血、虹 彩炎及び白内障		
	200 ppm 以下	毒性所見なし	毒性所見なし		

(3)発生毒性試験(ラット)

Wistar ラット (一群雌 24 匹) の妊娠 $6\sim19$ 日に強制経口 (原体:0、10、100 及び 1,000 mg/kg 体重/日、溶媒:1%CMC) 投与して発生毒性試験が実施された。 母動物では、100 mg/kg 体重/日以上投与群で肝絶対及び比重量増加が認められた。 胎児には、検体投与の影響は認められなかった。

本試験において、母動物の 100 mg/kg 以上投与群で肝絶対及び比重量増加が認められ、胎児では毒性所見は認められなかったので、無毒性量は母動物で 10 mg/kg 体重/日、胎児で本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。 (参照 34)

(4)発生毒性試験(ウサギ)

日本白色種ウサギ (一群雌 25 匹) の妊娠 $6\sim27$ 日に強制経口 (原体:0、20、100 及び 1,000 mg/kg 体重/日、溶媒:1%CMC) 投与して発生毒性試験が実施された。

母動物では、1,000 mg/kg 体重/日投与群において、妊娠末期に摂餌量減少及び軟便が認められた。

胎児には、検体投与の影響は認められなかった。

本試験において、母動物の 1,000 mg/kg 体重/日投与群で摂餌量減少等が認められ、胎児では毒性所見は認められなかったので、無毒性量は母動物で 100 mg/kg 体重/日、胎児で本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。 (参照 35)

(5)発達神経毒性試験(ラット)

Wistar ラット (一群雌 30 匹) の妊娠 6 日~哺育 21 日に混餌 (原体: 0、120、1,200 及び 12,000 ppm: 平均検体摂取量はそれぞれ 0、9.9、99.5 及び 980 mg/kg体重/日) 投与して発達神経毒性試験が実施された。

各投与群で認められた毒性所見は表37に示されている。

12,000 ppm 投与群の雄で水迷路検査における所要時間の高値(17.3 秒)がみられたが、対照群との差は僅かであり、雌で同様な変化はなく、さらに背景データ(11.3~21.4 秒)の範囲内であったことから、検体投与とは関係しないと考えられた。神経病理組織学的検査では、検体投与に関連する変化はみられなかった。本試験において、母動物では 1,200 ppm 以上投与群で小葉中心性肝細胞肥大等、児動物では 1,200 ppm 以上投与群で包皮分離発現日遅延等が認められたので、無毒性量は母動物及び児動物で 120 ppm (9.9 mg/kg 体重/日)であると考えられた。発達神経毒性は認められなかった。(参照 55)

(眼球腫大等の検討については [14.(3)、(5)~(7)]を参照)

表 37 発達神経毒性試験 (ラット) で認められた毒性所見

投与群	母動物	児動物
12,000 ppm		・眼の異常 ¹⁾ (眼赤色化、虹彩腫大、対光反射 の消失、網膜変性、角膜炎、鉱質沈着、ブド ウ膜炎、白内障及び視神経の萎縮) ・膣開口発現日遅延
1,200 ppm 以上	・肝絶対及び比重量増加・小葉中心性肝細胞肥大	・体重増加抑制 ²⁾ ・包皮分離発現日遅延 ・眼の異常 ¹⁾ (眼球腫大、角膜混濁、眼球突出 及び虹彩前癒着)
120 ppm	毒性所見なし	毒性所見なし

^{1):} 眼の異常については、発生頻度に有意差のない所見もあったが、いずれも検体投与に関連した変化と考えられた。

13. 遺伝毒性試験

フルベンジアミドの細菌を用いた復帰突然変異試験、チャイニーズハムスター肺由来細胞 (V79) を用いた遺伝子突然変異試験、チャイニーズハムスター肺由来細胞 (CHL) を用いた染色体異常試験及びマウスを用いた小核試験が実施された。

試験結果は表 38 に示されているとおり、全て陰性であった。フルベンジアミドに遺伝毒性はないものと考えられた。(参照 $36\sim38$ 、66、67)

表 38 遺伝毒性試験結果概要 (原体)

எ	大験	対象	処理濃度・投与量	結果
in vitro	復帰突然 変異試験	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537 株) Escherichia coli (WP2uvrA 株)	3.86~313 μg/プレート (-S9) 61.7~5,000 μg/プレート (+S9)	陰性
	遺伝子突然変異試験	チャイニーズハムスター肺由来細 胞(V79) (<i>Hprt</i> 遺伝子座)	7.5~240 μg/mL (+/-S9)	陰性
	染色体 異常試験	チャイニーズハムスター肺由来細胞(CHL)	550~2,200 μg/mL (+/-S9) (6 時間処理) 125~500 μg/mL (-S9) (40 時間処理) 300~1,200 μg/mL (+S9) (20 時間処理)	陰性
in vivo		ICR マウス(骨髄細胞) (一群雌雄各 5 匹)	500、1,000、2,000 mg/kg 体重 (強制単回経口投与)	陰性
	小核試験	NMRI マウス(骨髄細胞) (一群雄各 5 匹)	1,000、2,000、4,000 mg/kg 体重 (1 日 1 回、24 時間間隔で 2 回 連続腹腔内投与)	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

^{2): 1,200} ppm については有意差がみられなかったが、検体投与に関連した変化と考えられた。

主として植物、土壌及び水中由来の代謝物 B 及び C の細菌を用いた復帰突然変異試験が実施された。結果は表 39 に示されているとおり、全て陰性であった。(参照 39、40)

被験物質 試験 対象 処理濃度・投与量 結果 S. typhimurium 復帰突然 (TA98, TA100, TA1535, $1.71 \sim 1.250 \,\mu \text{g/} \text{T} \text{V} - \text{F} \text{ (-S9)}$ 代謝物 B 陰性 変異試験 TA1537株) $6.86 \sim 5,000 \,\mu \text{g/} \text{?} \, \text{V} - \text{$\, \text{$} \ \text$ E. coli (WP2uvrA 株) S. typhimurium (TA98, TA100, TA1535, $3.86 \sim 313 \,\mu g/\mathcal{I} \,\nu - \, (+/-S9)$ 復帰突然 TA1537 株) 代謝物 C 陰性 変異試験 E. coli (WP2uvrA 株) $6.86\sim5,000$ μg/ $^{\circ}$ νート (+/-S9)

表 39 遺伝毒性試験結果概要(代謝物)

注) +/-S9: 代謝活性化系存在下及び非存在下

14. その他の試験

(1) ラットの甲状腺関連ホルモン濃度及び肝薬物代謝酵素に対する影響

反復経口投与による各種毒性試験 [10. ~12.] において、検体投与により甲状腺への影響が認められたため、Fischer ラット (一群雌 20 匹) に混餌 (原体: 0、1,000 及び 10,000 ppm: 平均検体摂取量はそれぞれ 0、83 及び 812 mg/kg 体重 /日に相当) 投与し、甲状腺関連ホルモン濃度及び肝薬物代謝酵素に対するフルベンジアミドの影響について検討された。なお、各群 20 匹のラットを 10 匹ずつのサブグループ A 及び B に分け、A には B にな B にかっ

検体投与により UDPGT 活性の誘導が認められた。これは T_4 代謝の亢進による血中甲状腺ホルモンの代謝亢進を示唆するが、同酵素の誘導剤で認められるべき血清 T_4 及び T_3 濃度の減少を伴わずに TSH 濃度が増加していたことから、甲状腺への影響は肝臓の酵素誘導によるフィードバックメカニズムだけでは十分に説明できないと考えられた。(参照 42)

(2) In vitroにおけるヨードサイロニン脱ヨード酵素 type1 に対する影響

反復経口投与による各種毒性試験 [10. ~12.] において、検体投与による甲状腺への影響が認められたため、Wistar ラット雄 2 匹の肝臓を用いて、甲状腺ホルモン代謝、特に T_4 から T_3 への活性化酵素であるヨードサイロニン脱ョード酵素 type1 に対するフルベンジアミドの影響について検討された。

試験の結果、添加可能最大濃度である $100 \, \mu M$ に至るまでヨードサイロニン脱ョード酵素 type1 の活性に影響を及ぼさなかったことから、フルベンジアミドはこの酵素の阻害を通じて甲状腺ホルモンの恒常性維持に影響を及ぼすことはないことが示唆された。(参照 42)

(3)1世代繁殖試験における児動物の眼球の病理組織学的検査

ラットを用いた 2 世代繁殖試験 [12.(1)] 及び 1 世代繁殖試験 [12.(2)] において F_1 児動物で認められた眼球腫大の詳細を検討するため、1 世代繁殖試験の F_1 児動物を対象として、異常所見のある眼球について病理組織学的検査が実施された。 さらに、その前駆病変の有無を検索するため、肉眼的異常が認められなかった眼球についても検査が実施された。

2,000 及び 20,000 ppm 投与群で眼球に肉眼的異常を示した離乳児では、虹彩癒着、出血、角膜炎、虹彩炎、白内障、角膜上皮基底細胞の水腫様変性及び角膜上皮空胞化という種々の組織学的変化が認められ、虹彩癒着による眼房水の排泄障害による眼圧増加が眼球腫大の原因である可能性が考えられた。肉眼的異常のない離乳児の眼球では検体の投与に関連した影響はみられず、1 世代繁殖試験における眼球への影響に関する無毒性量は 200 ppm であると考えられた。(参照42)

(4) 混餌投与による眼発達に対する影響(マウス)

ICR マウス(対照群: 雌 25 匹、投与群: 雌 28 匹)の妊娠 6 日~哺育 21 日に混餌(原体: 0、2,000 及び 4,500 ppm)投与して出生児の眼発達に対する影響が検討された。投与量については、平均検体摂取量が 1,000 mg/kg 体重/日となるように、妊娠 6 日~哺育 3 日の混餌濃度は 4,500 ppm、哺育 3~21 日では 2,000 ppm の混餌濃度を含有する試験飼料を自由に摂取させた。

母動物では、一般状態、体重変化及び繁殖能等への影響は認められなかった。 F₁児動物において、哺育7日以降の体重及び体重増加量が軽度な低値を示した が、眼の異常は観察されず、他の一般状態、産児数及び生存率等への影響も認め られなかった。

本試験において、限界用量である 1,000 mg/kg 体重/日の混餌投与において出生児の眼発達に対する影響は認められなかった。 (参照 68)

(5) 眼球異常を惹起する暴露時期の検討試験(ラット)

Wistar 妊娠ラット(一群 10 匹)を用い、妊娠・哺育期(妊娠 5 日~哺育 21日)、妊娠期(妊娠 5 日~出産)及び哺育期(出産~哺育 21日)の各投与群及び対照群に混餌(原体:0及び 2,000 ppm:平均検体摂取量は表 40 参照)投与し、開眼時(生後 14~16日)に眼球の観察を行って、フルベンジアミドの眼球異常を惹起する暴露時期の検討試験が実施された。

表 40 眼球異常を惹起する暴露時期の検討試験(ラット)の平均検体摂取量

投与群		妊娠・哺育期	妊娠期	哺育期
投与量 (ppm)		2,000	2,000	2,000
五444441151E	妊娠•哺育期	213		
平均検体摂取量 (mg/kg 体重/日)	妊娠期	126	136	
(mg/kg 件里/口)	哺育期	300		312

/:該当せず

母動物及び児動物における眼球所見は表 41 に示されている。

母動物の一般状態、体重、摂餌量及び繁殖能(受胎率、出産率及び妊娠期間) に検体投与の影響は認められなかった。

児動物では、産児数、生存児数、性比及び体重に検体投与の影響は認められず、生存率(出生率 5、4日生存率 5及び離乳率)は検体投与群で低下傾向であり、妊娠期投与群の4日生存率は対照群に比べて有意に低下した。また、妊娠・哺育期投与群及び哺育期投与群において、児動物の眼球腫大及び眼球暗赤色/黒色化の発生率が対照群に比べて有意に高く、数例では眼球混濁を伴った。妊娠期投与群では、これら眼球の異常は認められなかった。

以上の結果から、児動物でみられた眼球異常は、妊娠期間の投与では発生せず、出生後の乳汁経路での暴露により発生することが推察された。(参照73、84)

表 41 母動物及び児動物における眼球所見(一般状態)

投与群		対照	妊娠·哺育期	妊娠期	哺育期
投上	与量(ppm)	0	2,000	2,000	2,000
<u> </u>	25年期間		妊娠5日~	妊娠5日~	出産~
1	χ - 7-33 11b1		哺育 21 日	出産	哺育 21 日
母動物		所見なし			
	眼球腫大(%)a	0.0	25.6↑	0.0	28.4↑
	即以外加重人(70)	[0.0]	[28.6]↑	[0.0]	[26.4]↑
 児動物	眼球暗赤色/	0.0	17.1↑	0.0	19.3↑
黑色化(%)a		[0.0]	[20.2]↑	[0.0]	[16.4] ↑
	眼球混濁(%)a	0.0	2.4	0.0	3.4
	取坏化地倒(70)"	[0.0]	[4.0]	[0.0]	[3.0]

/:該当せず

a: 児動物当たりの発生率([]内の数値は一腹当たりの平均値)

↑ \downarrow P<0.05、↑↓ P<0.01 (児動物当たりの発生率: Fisher 検定、一腹当たりの発生率: Steel 多重比較検定)

5 哺育期投与群について影響は認められなかった。

-

(6) 生後眼球発達における病理組織学的変化に対する影響(ラット)

Wistar 妊娠ラット (一群 33 匹)を用い、出産後から哺育 14 日まで混餌(原体: 0 及び 2,000 ppm)投与し、哺育 $7\sim14$ 日の各日に $3\sim4$ 腹の児動物をと殺し、病理組織学的検査を行って、フルベンジアミドの眼球の生後発達過程に及ぼす影響について検討が実施された。

母動物の一般状態及び体重並びに児動物の生存率及び体重に検体投与の影響 は認められなかった。

児動物では、眼球の肉眼的病理検査において、眼球腫大が検体投与群で生後 10 日以降に認められた。また、前眼部リング状赤色領域は対照群でも認められ たが、検体投与群では生後 10 日以降の発生率及び生後 11 日以降の所見の程度が 対照群に比べて有意に増加した。

病理組織学的検査の結果、眼房内出血は対照群でも認められたが、検体投与群では生後 10 日以降の発生率が対照群に比べ増加し(生後 10 及び 14 日に統計学的有意差あり)、所見の程度が生後 11 日以降に有意に増加した。検体投与群では、生後 11 日以降にフォンタナ腔赤血球沈着の発生率及び所見の程度が対照群に比べ増加し、生後 13 日以降には統計学的有意差が認められた。また、検体投与群では、生後 10 日以降に虹彩角膜癒着の発生率及び所見の程度が対照群に比べ増加し、生後 10、12~14 日には統計学的有意差が認められた。

以上の結果から、児動物への検体の乳汁経由での暴露により眼房内出血の持続及び悪化が起こり、赤血球のフォンタナ腔への沈着及び虹彩角膜癒着が生じ、眼房水の排泄が障害されて眼圧が上昇し、二次的影響として眼球腫大が発症することが推察された。(参照 73、85)

(7) 眼球異常と血液凝固阻害との関連性 (ラット)

Wistar 妊娠ラット(一群 8~12 匹)を用い、出産後から哺育 10 日又は 14 日のと殺時まで母動物に混餌(原体:0及び 2,000 ppm)投与して、眼球腫大のメカニズムを解明する目的で血液凝固阻害との関連性が検討された。試験①では主に児動物の血液凝固能、線維素溶解活性及び肉眼的病理検査、試験②ではフルベンジアミド投与群のほか、ビタミン K_2 (30 mg/kg 体重/日)を単独又は併用で生後 4~13 日の児動物に皮下投与する群を別に設け、血液凝固能、肉眼的病理検査及び病理組織学的検査が実施された。

試験①の児動物における血液凝固能及び線維素溶解活性は表 42 に、試験②の 児動物における血液凝固能及び眼球所見は表 43 に示されている。

試験①において、母動物では検体投与の影響は認められなかったが、児動物の雌雄で PT 及び APTT の有意な延長並びに TT の有意な低下が認められ、血液凝固因子活性の中でビタミン K 依存性の第 II、第 VII 及び第 IX 因子活性の有意な減少又は減少傾向が認められた。また、眼球の肉眼的病理検査において、眼球腫大及び前眼部リング状赤色領域の発生率が有意に増加した。

試験②において、児動物ではフルベンジアミド投与群の雌雄で PT 及び APTT の有意な延長並びに TT の有意な低下が認められたが、フルベンジアミド/ビタミン K_2 投与群では雌雄とも血液凝固能に変化は認められなかった。また、フルベンジアミド投与群の肉眼的病理検査において、眼球腫大及び前眼部リング状赤色領域の発生率が有意に増加したが、フルベンジアミド/ビタミン K_2 投与群では眼球腫大は認められず、前眼部リング状赤色領域の発生率はフルベンジアミド投与群に対して有意に低下した。病理組織学的検査の結果、フルベンジアミド投与群では眼房内出血、フォンタナ腔赤血球沈着及び虹彩角膜癒着の発生率及び所見の程度が有意に増加したが、フルベンジアミド/ビタミン K_2 投与群では眼房内出血及びフォンタナ腔赤血球沈着の発生率及び所見の程度はフルベンジアミド投与群に対して有意に減少し、虹彩角膜癒着の程度に減少傾向がみられた。

以上の結果から、ラットでは検体の乳汁経由での暴露によりビタミン K 依存性 血液凝固能が低下し、眼房内出血が持続、悪化することにより眼房水の排出が障 害され、眼圧が上昇することにより眼球腫大が発症することが推察された。(参 照 73、86)

	表 42 児動物における血液凝固能及び線維素溶解活性					
	性別	雄		出	Í.	
	検体投与量(ppm)	0	2,000	0	2,000	
	PT(秒)	7.8	10.5	8.1	10.6↑	
	APTT(秒)	6.7	9.2 ↑	6.5	10.6↑	
	TT(%)a	507	$246 \Downarrow$	452	247ψ	
١.	フィブリノーゲン(mg/dL)	141	127	141	134	
生	プラスミノーゲン(%)a	15.5	14.3	20.9	15.2↓	
後 10	血液凝固第Ⅱ因子活性(%)a	88.4	47.5↓	77.5	40.5↓	
	血液凝固第V因子活性(%)a	493	725	512	479	
''	血液凝固第Ⅷ因子活性(%)a	311	219	368	$154 \Downarrow$	
	血液凝固第IX因子活性(%)a	38.7	18.8↓	58.1	20.3↓	
	血液凝固第X因子活性(%)a	36.2	27.1	33.9	25.0	
	血液凝固第XI因子活性(%)a	56.9	53.0	91.0	46.7	
	PT(秒)	9.1	14.6↑	8.9	14.3↑	
生	APTT(秒)	9.2	16.4↑	9.1	17.0↑	
後 14	TT(%)a	384	95.5↓	368	101∜	
14	フィブリノーゲン(mg/dL)	160	149	151	171	
	プラスミノーゲン(%)a	_	_	_	_	

表 42 児動物における血液凝固能及び線維素溶解活性

注)表中の数字は平均値を示す。

^{↑↓:} P<0.05、↑↓: P<0.01 (Student の t 検定又は Aspin-Welch の t 検定)

^{- :} 生後 10 日に影響がみられなかったため測定せず

a:ヒト標準血清に対する割合

表 43 生後 14 日の児動物における血液凝固能及び眼球所見

群		対照群	フルベンジア ミド投与群	ビタミン K 2 投与群	フルベンジア ミド/ビタミ ン K ₂ 投与群	
	ベンジアミド (ppm)		0	2,000	0	2,000
ŀ	ごタミン K2投与 (mg/kg 体重/目		0	0	30	30
	PT(秒)	雄	8.7	12.1↑	8.5	8.4↓
血	F 1 (1/9)	雌	8.7	12.3↑	9.4	9.0∜
血液凝固能	APTT(秒)	雄	5.6	11.2↑	4.9	3.8↓
蜒 固	AFTI((19)	雌	6.5	10.2 ↑	6.4	4.9∜
能	TT(%)a	雄	444	161∜	438	500↑
	11(%)	雌	457	184↓	409	466↑
肉	眼球腫大((%)	0	12*	0	0\$
	前眼部リン 赤色領域(-	3	45*	3	15#\$
見 	後眼部赤色	斑(%)	14	18	21	15
		Total	32	79*	45	58\$
	眼房内出血(%)	±	22	19	22	21
		+	8	23	21	27
		2+	3	15	3	9
		3+	0	22	0	1
				*		\$
		Total	12	51*	29	21\$
病		土	10	25	27	17
病 理所 見	フォンタナ 腔赤血球	+	1	19	1	4
覚		2+	0	4	0	0
		3+	0	3	0	0
				*		\$
		Total	13	32*	25	32
	計 公	±	9	5	23	31
	虹彩角膜 癒着(%)	+	4	22	1	1
	//欧/日(/0/	2+	0	4	0	0
				*		
注)	血液返回鉛の粉	ん付けせても	5倍 明珠記目は1	見動物当たりの発生	+ 歩き二十	

注)血液凝固能の数値は平均値、眼球所見は児動物当たりの発生率を示す。

a: ヒト標準血清に対する割合

^{↑ ↓} P<0.05、↑↓ P<0.01 (検体投与群は対照群、検体/ビタミン K_2 投与群は検体投与群との比較): Tucky の多重比較検定

^{*} P<0.01 (対照群との比較)、 # P<0.01 (ビタミン K_2 投与群との比較)、 \$ P<0.01 (検体投与群との比較): Fisher 検定(発生率の比較)又は Wilcoxon 検定(グレードの比較)

以上の眼球異常に関するメカニズム試験 [14. (5)~(7)] の結果から、ラット 児動物の眼球異常は、妊娠期間の検体投与では発生せず、出生後の乳汁経由での 暴露により発生すること、また、検体の乳汁経由での暴露によりビタミン K 依存 性血液凝固能が低下し、眼房内出血の持続及び悪化により赤血球のフォンタナ腔 への沈着及び虹彩角膜癒着が生じ、眼房水の排出が障害され、眼圧が上昇することにより眼球腫大が発症することが推察された。

(8) 肝ミクロソーム画分による in vitro代謝試験

フルベンジアミドの哺乳動物代謝における種差及び性差の原因を明らかにする目的で、雌雄の Fischer ラット、ICR マウス、ビーグル大及びヒト(10 ドナー混合)の肝臓より調製したミクロソーム画分を用いた *in vitro* 代謝試験が実施された。

ラットの場合、雄由来ミクロソームはフルベンジアミドの代謝物 E への顕著な水酸化活性を示したが、雌由来ミクロソームには同活性は認められなかった。

一方、ラットを除く他動物(マウス、イヌ及びヒト)由来のミクロソームの場合、雌雄で同程度のフルベンジアミド水酸化活性を示した。(参照 42)

(9) 28 日間免疫毒性試験(ラット)

Wistar ラット(一群雌雄各 10 匹)を用いて、混餌(原体: 0、40、400 及び 4,000 ppm: 平均検体摂取量は表 44 参照) 投与による 28 日間免疫毒性試験が実施された。

投与群		40 ppm	400 ppm	4,000 ppm
平均検体摂取量	雄	3.34	33.6	336
(mg/kg 体重/日)	雌	4.00	38.4	359

表 44 28 日間免疫毒性試験 (ラット) の平均検体摂取量

4,000 ppm 投与群の雄で ALT 及び AST 減少、同投与群の雌で RBC 及び ALT 減少並びに甲状腺絶対及び比重量増加が認められ、400 ppm 以上投与群の雌で Hb 及び Ht 減少並びに肝絶対及び比重量増加が認められた。

FACS によるサブセット解析にて、4,000 ppm 投与群の雌雄で CD45^{total}及び CD45^{high} 陽性脾臓細胞数の減少とそれに関連した CD45^{low} 陽性脾臓細胞数の増加が認められ、同群雌では IgA 減少が認められた。

本試験において、4,000 ppm 投与群の雄で ALT 及び AST の減少が、400 ppm 以上投与群の雌で Hb 及び Ht の減少等が認められたので、一般毒性に対する無毒性量は、雄で 400 ppm(33.6 mg/kg 体重/日)、雌で 40 ppm(4.00 mg/kg 体重/日)であり、また、4,000 ppm 投与群の雌雄で CD45total 及び CD45high 陽性脾

臓細胞数の減少等が認められたので、免疫毒性に対する無毒性量は、雌雄とも $400~\rm ppm$ (雄: $33.6~\rm mg/kg$ 体重/日、雌: $38.4~\rm mg/kg$ 体重/日)であると考えられた。(参照 69)

皿. 食品健康影響評価

参照に挙げた資料を用いて農薬「フルベンジアミド」の食品健康影響評価を実施 した。なお、今回、動物体内運命試験(ラット及びマウス)、作物残留試験(ごぼ う、かぼちゃ等)等が新たに提出された。

14C で標識したフルベンジアミドを用いた動物体内運命試験の結果、ラットに単回投与後の血漿中濃度は低用量群で投与6~12 時間後に、高用量群で投与12 時間後に最高に達した。投与後48 時間の吸収率は雄で少なくとも23.5%、雌で少なくとも34.1%と推定された。組織内では、投与後9時間で吸収部位である消化管(胃、小腸及び大腸)、肝臓、腎臓、副腎及び脂肪等に比較的高濃度に認められた。主に糞及び胆汁に排泄され、特に糞中への排泄が多かった。尿、糞及び胆汁中における代謝物としてE、F、G、H、I、P、R及び各種抱合体が認められた。

畜産動物(泌乳ヤギ及び産卵鶏)を用いた動物体内運命試験の結果、代謝物 P が 泌乳ヤギの乳汁及び脂肪において 10%TRR を超えて認められた。

14C で標識したフルベンジアミドを用いた植物体内運命試験の結果、残留放射能はほとんどが散布部位で認められ、未変化のフルベンジアミドが大部を占めた。りんご果実及びとうもろこし茎葉中に 10%TRR を超える代謝物として B が認められた。後作物(春小麦、ふだんそう及びかぶ)において、各試料中の残留放射能の主要成分は未変化のフルベンジアミドであり、代謝物 U が 10%TRR を超える代謝物として認められた。

野菜、果実、豆類、茶等を用いて、フルベンジアミド並びに代謝物 B 及び C を分析対象化合物とした作物残留試験が実施された。国内でのフルベンジアミドの最大残留値は、茶(荒茶)の $34.9\,$ mg/kg であった。代謝物 B の最大残留値は、リーフレタスの $0.20\,$ mg/kg であった。代謝物 C は全て定量限界未満であった。海外でのフルベンジアミドの最大残留値は、ほうれんそうの $6.72\,$ mg/kg であった。代謝物 B の最大残留値は、マスタードグリーンの $0.04\,$ mg/kg であった。後作物残留試験の結果、いずれの作物でもフルベンジアミド並びに代謝物 B 及び C ともに定量限界未満であった。

産卵鶏及び泌乳牛を用いて、フルベンジアミド及び代謝物 P を分析対象化合物とした畜産物残留試験が実施された。その結果、最大残留値は産卵鶏及び泌乳牛とも脂肪に認められ、産卵鶏ではフルベンジアミド及び代謝物 P がそれぞれ 0.29 及び $0.02~\mu g/g$ 、泌乳牛ではそれぞれ $1.2~\mu g/g$ であった。

各種毒性試験結果から、フルベンジアミド投与による影響は主に肝臓(肝細胞肥大、肝細胞脂肪化等)、甲状腺(ろ胞上皮細胞肥大等)及び眼(眼球腫大等:ラット)に認められた。神経毒性、発がん性、繁殖能に対する影響、催奇形性、発達神経毒性及び遺伝毒性は認められなかった。

マウス及びラットでは検体投与の影響による甲状腺の病理学的所見が認められたが、両種の変化は質的に異なり、種差があった。また、甲状腺の変化の原因として、肝臓の薬物代謝酵素誘導による間接的影響のほか、薬物の直接影響も考えられ

た。

畜産動物を用いた動物体内運命試験において代謝物 P が、植物体内運命試験において代謝物 B 及び U が 10%TRR を超えて認められた。代謝物 P はラットにおいても認められた。代謝物 B 及び U はラットにおいて検出されなかったが、代謝物 B の急性経口毒性は弱く($LD_{50}: 2,000 \ mg/kg$ 体重超)、遺伝毒性試験の結果も陰性であり、代謝物 U は後作物の一部でのみ僅かに認められた($0.001\sim0.01 \ mg/kg$)ことから、農産物及び畜産物中の暴露評価対象物質をフルベンジアミド(親化合物のみ)と設定した。

各試験における無毒性量等は表 45 に、単回経口投与等により惹起されると考えられる毒性影響等は表 46 に示されている。

食品安全委員会は、各試験で得られた無毒性量のうち最小値がラットを用いた 2 年間発がん性試験の 1.70 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.017 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

また、フルベンジアミドの単回経口投与等により生ずる可能性のある毒性影響として、2世代繁殖試験(ラット)、1世代繁殖試験(ラット)及び発達神経毒性試験(ラット)において、児動物で眼球腫大、虹彩癒着等の眼の異常が認められ、出生後の乳汁を介した暴露により惹起されると考えられることから、食品安全委員会は授乳中の女性を対象として急性参照用量(ARfD)を設定することが妥当と判断した。これらの変化に対する無毒性量のうち最小値は2世代繁殖試験の3.95 mg/kg体重/日、最小毒性量のうち最小値は発達神経毒性試験の99.5 mg/kg体重/日であった。一方、1世代繁殖試験において無毒性量15.0 mg/kg体重/日が得られており、この差は用量設定の違いによるものと考えられた。したがって、食品安全委員会は、ラットを用いた2世代繁殖試験、1世代繁殖試験及び発達神経毒性試験の結果を総合的に評価し、15.0 mg/kg体重/日を無毒性量とするのが妥当であると判断し、これを根拠として、安全係数100で除した0.15 mg/kg体重を授乳中の女性に対するARfDと設定した。また、一般の集団に対しては、フルベンジアミドの単回経口投与等により生ずる可能性のある毒性影響は認められなかったため、ARfDは設定する必要がないと判断した。

ADI 0.017 mg/kg 体重/日

(ADI 設定根拠資料) 発がん性試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 1.70 mg/kg 体重/日

(安全係数) 100

ARfD

0.15 mg/kg 体重

※授乳中の女性

(ARfD 設定根拠資料)

2世代繁殖、1世代繁殖及び

発達神経毒性試験の総合評価

(動物種) ラット

(期間) 2世代、1世代及び妊娠6日~

哺育 21 日

(投与方法) 混餌

(無毒性量) 15.0 mg/kg 体重/日

(安全係数) 100

ARfD

設定の必要なし

※一般の集団

<参考>

<JMPR、2010年>

ADI

0.02 mg/kg 体重/日

(ADI 設定根拠資料①)

発がん性試験

(動物種)

ラット

(期間) (投与方法) 2 年間

(無毒性量)

1.7 mg/kg 体重/日

(安全係数)

100

混餌

(ADI 設定根拠資料②)

慢性毒性試験

(動物種)

イヌ

(期間)

1年間

(投与方法)

混餌

(無毒性量)

2.2 mg/kg 体重/日

(安全係数)

100

ARfD

0.2 mg/kg 体重

(ARfD 設定根拠資料)

2世代繁殖、1世代繁殖及び

発達神経毒性の総合評価

(動物種)

ラット

(期間)

2世代、1世代及び妊娠6日~

哺育 21 日

(投与方法)

混餌

(無毒性量)

15 mg/kg 体重/日

(安全係数)

100

<EPA、2008年>

cRfD 0.024 mg/kg 体重/日

(cRfD 設定根拠資料①) 慢性毒性試験

(動物種)ラット(期間)1年間(投与方法)混餌

(無毒性量) 2.4 mg/kg 体重/日

(安全係数) 100

(cRfD 設定根拠資料②) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌

(無毒性量) 2.21/2.51 mg/kg 体重/日

(安全係数) 100

(cRfD 設定根拠資料③) 発がん性試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 1.70/2.15 mg/kg 体重/日

(安全係数) 100

aRfD (対象:一般の集団及 0.995 mg/kg 体重

び 13~49 歳の女性)

(aRfD 設定根拠資料) 2世代繁殖、1世代繁殖及び

発達神経毒性試験の総合評価

(動物種) ラット

(期間) 2世代、1世代及び妊娠6日~

哺育 21 日

(投与方法) 混餌

(無毒性量) 99.5 mg/kg 体重

(安全係数) 100

<EFSA、2013年>

ADI 0.017 mg/kg 体重/日

(ADI 設定根拠資料) 発がん性試験

(動物種)ラット(期間)2年間役与方法)混餌

(無毒性量) 1.7 mg/kg 体重/日

(安全係数) 100

ARfD 0.1 mg/kg 体重

(ARfD 設定根拠資料) 発達神経毒性試験

(動物種) ラット

(期間) 妊娠6日~哺育21日

(投与方法) 混餌

(無毒性量) 10 mg/kg 体重/日

(安全係数) 100

(参照 77~79、82、83)

表 45 各試験における無毒性量等

		本 40 谷武殿にのける無毎は里寺					
動物種	試験	投与量 (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考 6		
ラット	90 日間 亜急性 毒性試験	0、20、50、200、2,000、20,000 ppm 雄:0、1.15、2.85、11.4、116、 1,190 雌:0、1.30、3.29、13.1、128、 1,320	雄:11.4 雌:3.29	雄:116 雌:13.1	雄:PLT增加 雌:小葉周辺性肝細胞脂肪化 等		
	1年間 慢性毒性 試験	0、20、50、2,000、20,000 ppm 雄:0、0.781、1.95、79.3、822 雌:0、0.960、2.40、97.5、998	雄:1.95 雌:2.40	雄:79.3 雌:97.5	雌雄:甲状腺ろ胞上皮細胞肥 大等		
	2年間 発がん性 試験	0、50、1,000、20,000 ppm 雄:0、1.70、33.9、705 雌:0、2.15、43.7、912	雄:1.70 雌:2.15	雄:33.9 雌:43.7	雌雄:小葉周辺性肝細胞脂肪 化等 (発がん性は認められない)		
	2世代繁殖試験	0、20、50、2,000、20,000 ppm P雄: 0、1.30、3.30、131、1,310 P雌: 0、1.59、3.95、159、1,580 F1雄: 0、1.64、4.05、162、1,640 F1雌: 0、1.84、4.59、176、1,810	親動物及び 児動物 P雄:3.30 P雌:3.95 F ₁ 雄:4.05 F ₁ 雌:4.59	親動物及び 児動物 P雄:131 P雌:159 F ₁ 雄:162 F ₁ 雌:176	親動物 雌雄:甲状腺ろ胞上皮細胞肥 大等 児動物 雌雄:肝絶対及び比重量増加 等 (繁殖能に対する影響は認め られない)		
	1世代繁殖試験	0、50、200、2,000、20,000 ppm P雄:0、3.25、12.9、127、1,290 P雌:0、3.84、15.0、149、1,490 F1雄:0、4.05、15.9、160、1,610 F1雌:0、5.28、21.0、206、2,090	親動物 P雄:127 P雌:3.84 F1雄:15.9 F1雌:5.28 児動物 P雄:12.9 P雌:15.0	親動物 P雄:1,290 P雌:15.0 Fı雄:160 Fı雌:21.0 児動物 P雄:127 P雌:149	親動物 雄:下垂体絶対及び比重量減 少等 雌:腎絶対及び比重量増加等 児動物 雌雄:肝絶対及び比重量増加 等 (繁殖能に対する影響は認め られない)		
	発生毒性 試験	0,10,100,1,000	母動物:10 胎児:1,000	母動物:100 胎児:-	母動物:肝絶対及び比重量増加 胎児:毒性所見なし (催奇形性は認められない)		
	発達神経 毒性試験	0、120、1,200、12,000 ppm 雌:0、9.9、99.5、980	母動物及び 児動物:9.9	母動物及び 児動物:99.5	母動物:小葉中心性肝細胞肥 大等 児動物:包皮分離発現日遅延 等 (発達神経毒性は認められない)		
マウス	90 日間 亜急性 毒性試験	0、50、100、1,000、10,000 ppm 雄:0、6.01、11.9、123、1,210 雌:0、7.13、14.7、145、1,420	雄:11.9 雌:14.7	雄:123 雌:145	雌雄:小葉中心性肝細胞肥大等 (本試験はガイドラインに準 拠せず)		
	18 か月間 発がん性	0、50、1,000、10,000 ppm 雄:0、4.85、94、988	雄:4.85 雌:4.44	雄:94 雌:93	雌雄:甲状腺ろ胞上皮細胞肥 大等		

.

⁶ 備考に最小毒性量で認められた所見の概要を示す。

	試験	雌: 0、4.44、93、937			(発がん性は認められない)
ウサギ	発生毒性 試験	0,20,100,1,000	母動物 : 100 胎児 : 1,000	母動物:1,000 胎児:-	母動物:摂餌量減少等 胎児:毒性所見なし (催奇形性は認められない)
イヌ	90 日間 亜急性 毒性試験	0、100、2,000、40,000 ppm 雄:0、2.58、52.7、1,080 雌:0、2.82、59.7、1,140	雄:2.58 雌:2.82	雄:52.7 雌:59.7	雌雄:副腎絶対及び比重量増加等
	1年間 慢性毒性 試験	0、100、1,500、20,000 ppm 雄:0、2.21、35.2、484 雌:0、2.51、37.9、533	雄:2.21 雌:2.51	雄: 35.2 雌: 37.9	雄:肝比重量増加等 雌:ALP 増加等
ADI			NOAEL: 1.70 SF: 100 ADI: 0.017		
	ADI 設定根拠資料			がん性試験	

ADI: 一日摂取許容量 NOAEL: 無毒性量 SF: 安全係数 -: 最小毒性量は設定できなかった。

表 46 フルベンジアミドの単回経口投与等により生ずる可能性のある毒性影響等 (授乳中の女性)

動物種	試験	投与量 (mg/kg 体重/日)	無毒性量及び急性参照用量設定に関連 するエンドポイント ¹⁾ (mg/kg 体重/日)
		0, 20, 50, 2,000, 20,000 ppm	P雌: 3.95 F ₁ 雌: 4.59
	2世代繁殖試験	P雌: 0、1.59、3.95、 159、1,580 F ₁ 雌: 0、1.84、4.59、 176、1,810	F ₁ 及び F ₂ 児動物の雌雄: 眼球腫大、虹彩癒着、出血、角膜上皮基 底細胞水腫性変性、角膜上皮細胞空胞 化、角膜炎、虹彩炎及び白内障
ラット		0、50、200、2,000、 20,000 ppm	P 雌: 15.0 F ₁ 児動物の雌雄:
	1世代繁殖試験	P雌: 0、3.84、15.0、 149、1,490	f1児動物の雌雄: 虹彩癒着、出血、虹彩炎及び白内障
	発達神経毒性	0、120、1,200、12,000	母動物: 9.9
	光達伊経毎任 試験	ppm	児動物の雌雄:眼球腫大、角膜混濁、眼 球突出及び虹彩前癒着
ARfD			NOAEL: 15.0 SF: 100 ARfD: 0.15
	ARfD 設定	は、大きな素性で見る。これを	ラットを用いた2世代繁殖試験、1世代 繁殖試験及び発達神経毒性試験の総合 評価

¹⁾:最小毒性量で認められた主な毒性所見を記した。 NOAEL:無毒性量 ARfD:急性参照用量 SF:安全係数

<別紙1:代謝物/分解物略称>

略称	化学名
	$N^{2}(2- $ メシル-1,1-ジメチルエチル)- N -{4-[1,2,2,2-テトラフルオロ-1-(トリフル
В	オロメチル)エチル]- o トリル}フタルアミド
	3-ヒドロキシ- ハ ²(2-メシル-1,1-ジメチルエチル)- ハ -{4-[1,2,2,2-テトラフルオロ
C	-1·(トリフルオロメチル)エチル]- o トリル}フタルアミド
T.	3-ヒドロキシ- ル ²(2-メシル-1,1-ジメチルエチル)- ル ²(4-[1-ヒドロキシ-2,2,2-ト
D	リフルオロ·1·(トリフルオロメチル)エチル]· o トリル}フタルアミド
	3- ヨード- パ -(2-メシル-1,1-ジメチルエチル)- パ -{2-(ヒドロキシメチ
E	ル)・4・[1,2,2,2・テトラフルオロ・1・(トリフルオロメチル)エチル]フェニル}フタル
	アミド
T.	3-ヨード- ハ ²-(2-メシル-1,1-ジメチルエチル)- ハ -{2-ホルミル-4-[1,2,2,2-テトラフ
F	ルオロ-1-(トリフルオロメチル)エチル]フェニル}フタルアミド
	2-ヨード- N (2-メシル-1,1-ジメチルエチル)-6-{4-ヒドロキシ-6-[1,2,2,2-テトラ
G	フルオロ・1・(トリフルオロメチル)エチル]-4 卅 3,1-ベンゾオキサジン-2-イル}ベ
	ンズアミド
	2-{[(3-ヨード-2-{[(2-メシル-1,1-ジメチルエチル)アミノ]カルボニル}フェニル)
Н	カルボニル]アミノ}-5-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]
	安息香酸
I	N^{ι} [1-(ヒドロキシメチル)-2-メシル-1-メチルエチル]-3-ヨード- N -{4-[1,2,2,2-テ
1	トラフルオロ-1-(トリフルオロメチル)エチル]- o トリル}フタルアミド
	$N^{L}[1-(ヒドロキシメチル)-2-メシル-1-メチルエチル]-N^{L}(ヒドロキシメチ)$
K	ル)-4-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]フェニル}-3-ヨ
	ードフタルアミド
\mathbf{M}	2-メチル-4-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]オキサニ
111	リド酸
P	3 -ヨード- N {4-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]- σ トリ
	ル}フタルイミド
	$2-[6-(N{2-ヒドロキシメチル-4-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチ$
R	ル)エチル]フェニル}カルバモイル)-2-ヨードフェニルカルボニルアミノ]-3-メ
	シル-2-メチルプロピオン酸
	2-[2-メチル-1-(メチルスルホニル)プロパン-2-イル]-1H-イソインドール
U	-1,3(2H)-ジオン
	JMPR②記載(A-27:フルベンジアミド-デスイオド-アルキル-フタルイミド)

<別紙2:検査値等略称>

下列和 2:快鱼们 略称	名称
A/G 比	アルブミン/グロブリン比
ai	有効成分量(active ingredient)
Alb	アルブミン
ALP	アルカリホスファターゼ
ALT	グルタミン酸ピルビン酸トランスアミナーゼ (GPT)
APTT	活性化部分トロンボプラスチン時間
AST	グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)
AUC	薬物濃度曲線下面積
ВВСН	B iologische B undesanstalt Bundessortenamt and CH emical industry 植物成長の段階を表す
CD45	白血球共通抗原
ChE	コリンエステラーゼ
Cmax	(血液又は血漿中) 最高濃度
CMC	(皿放文は皿架下) 取同仮及 カルボキシメチルセルロース
FACS	フローサイトメトリー
FOB	機能観察総合検査
	γ·グルタミルトランスフェラーゼ
GGT	(γ-グルタミルトランスペプチターゼ(γ-GTP))
Glob	グロブリン
Glu	グルコース(血糖)
Hb	ヘモグロビン (血色素量)
Ht	ヘマトクリット値
LC_{50}	半数致死濃度(50%致死濃度)
LD_{50}	半数致死量(50%致死量)
MCH	平均赤血球血色素量
MCV	平均赤血球容積
PHI	最終使用から収穫までの日数
PLT	血小板数
РТ	プロトロンビン時間
RBC	赤血球数
TAR	総処理(投与)放射能
TBA	総胆汁酸
T.Bil	総ビリルビン
T.Chol	総コレステロール
TG	トリグリセリド
T_{\max}	(血液又は血漿中) 最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
TSH	甲状腺刺激ホルモン
TT	トロンボテスト値
$T_{1/2}$	消失半減期
<u>T</u> ₃	トリョードサイロニン
T_4	サイロキシン

UDPGT	ウリジン二リン酸グルクロニルトランスフェラーゼ

<別紙3:作物残留試験成績(国内)>

	試		793023	(国1)	残留值(mg/kg)							
作物名 (分析部位)	験ほ	使用量	回数	PHI	フルベン	ジアミド	代謝	物B	代謝	t物C		
実施年度	場数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値		
とうもろこし (乾燥子実) 2008 年度	2	$200^{ m WDG}$	2	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01						
とうもろこし (種子) 2008年度	2	$200^{ m WDG}$	2	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01						
そば (種子) 2009年度	2	190-200 ^{WDG}	2	7 14 21	3.27 1.68 1.24	2.16 1.35 1.05						
だいず (乾燥子実) 2003年度	2	150-200 ^{WDG}	3	7 14 21 42-44	0.089 0.077 0.068 0.030	0.051 0.040 0.035 0.018	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006		
だいず (乾燥子実) 2009年度	2	153-158.4 ^{SC}	3	7 14 21	0.06 0.05 0.04	0.045 0.040 0.033						
だいず (乾燥子実) 2009年度	2	90 ^{sc} (無人ヘリ による散布)	3	7 14 21	0.09 0.05 0.01	0.063 0.038 0.01*						
あずき (乾燥子実) 2009年度	2	$200^{ m WDG}$	2	$7 \\ 14 \\ 21$	0.04 0.03 0.02	0.025* 0.020* 0.015*						
ばれいしょ (塊茎) 2007年度	2	$200^{ m WDG}$	2	1 3 7	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01						
さといも (塊茎) 2007年	2	$200^{ m WDG}$	2	$1\\3\\14$	<0.01 0.01 <0.01	<0.01 0.01* <0.01						
かんしょ (塊根) 2007年	2	$300^{ m WDG}$	2	1 3 14	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01						
やまのいも (塊茎) 2007年度	2	$200^{ m WDG}$	2	1 3 14	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01						
やまのいも (むかご) 2007年度	2	$200^{ m WDG}$	2	14	0.70	0.615						
てんさい (根部) 2011 年度	2	90-94.1 ^{SC}	2	1 3 7	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01						
だいこん (葉部) 2002年度	2	150-200 ^{WDG}	2	7 14 21 28	3.89 1.14 1.03 0.14	2.50 0.82 0.44 0.08*	0.05 0.01 0.01 <0.01	0.03 0.01* 0.01* <0.01	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01		

	試				残留值(mg/kg)							
作物名(分析部位)	験ほ	使用量	回数	PHI	フルベン	ジアミド	代謝	l物B	代謝	t物C		
実施年度	場数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値		
だいこん	<i></i>			7	0.007	0.006*	< 0.006	< 0.006	< 0.006	< 0.006		
(根部)	2	150-200 ^{WDG}	2	$\begin{array}{c} 14 \\ 21 \end{array}$	$0.007 \\ 0.005$	0.006* 0.005*	<0.006 <0.006	<0.006 <0.006	<0.006 <0.006	<0.006 <0.006		
2002年度				$\frac{21}{28}$	< 0.005	< 0.005	<0.006	<0.006	<0.006	<0.006		
はつか だいこん (茎葉) 2007年度	2	$100^{ m WDG}$	1	7 14	5.24 0.30	3.50 0.18*						
はつか だいこん (根) 2007年度	2	$100^{ m WDG}$	1	7 14	0.02 <0.01	0.02* <0.01						
かぶ				1	15.3	12.9						
(葉部)	2	$200^{ m WDG}$	2	3 7	13.4	10.8				/		
2008年度				14	10.9 7.37	$10.0 \\ 6.21$						
かぶ				1	0.06	0.033						
(根部)	2	$200^{ m WDG}$	2	3 7	$0.06 \\ 0.04$	$0.04 \\ 0.023$						
2008年度				14	0.04	0.023 0.023						
わさび だいこん	2	$150^{ m WDG}$	0	14	0.06	0.045						
(根部) 2009年度		190"29	2	21	0.05	0.035						
				1	1.81	1.64	0.02	0.02	<0.01	<0.01		
はくさい		O O O WDC		3	1.36	1.08	0.01	0.01*	<0.01	<0.01		
(茎葉) 2002年度	2	$200^{ m WDG}$	3	7 14	$0.66 \\ 0.38$	$0.54 \\ 0.30$	0.01 <0.01	0.01* <0.01	<0.01 <0.01	<0.01 <0.01		
				21	0.15	0.10	< 0.01	< 0.01	<0.01	<0.01		
はくさい		0.4 g/箱 ^{SC} ×		1	1.92	1.13						
(茎葉) 2007-2009年	2	1 +	4	3	2.10	1.59						
度		300^{WDG}		14	0.94	0.64						
L				1	1.13	0.67	0.01	0.01*	< 0.01	< 0.01		
キャベツ (葉球)	2	$120 \text{-} 200^{\mathrm{WDG}}$	3	3 7	1.50 1.50	$0.70 \\ 0.67$	$0.02 \\ 0.01$	0.01* 0.01*	<0.01 <0.01	<0.01 <0.01		
2002年度		120 200		14	0.32	0.13	<0.01	<0.01	<0.01	<0.01		
				21	0.10	0.05*	< 0.01	<0.01	<0.01	<0.01		
キャベツ				$\frac{1}{3}$	$0.32 \\ 0.19$	$0.19 \\ 0.09$	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		
(葉球)	2	$200^{ m WDG}$	3	7	0.08	0.05	<0.01	< 0.01	<0.01	<0.01		
2003年度				14	0.03	0.02*	< 0.01	< 0.01	<0.01	<0.01		
2. 2.33		0.4 g/箱 ^{SC} ×		21	0.01	0.01*	<0.01	<0.01	<0.01	<0.01		
キャベツ (葉球)	2	1	3	1 3	$0.50 \\ 0.48$	$0.40 \\ 0.44$				/		
2006年度		+ 200-300 ^{WDG}	"	7	0.48	$0.44 \\ 0.25$				/		
+		0.4 g/箱 ^{SC} ×			0.0=	6.7-			 			
キャベツ (葉球)	2	1	4	$\frac{1}{3}$	$0.87 \\ 0.88$	$0.75 \\ 0.66$				/		
2007年度		+ 300 ^{WDG}		14	0.45	0.25				/		
芽キャベツ		000		1	1.24	0.76						
(脇芽)	2	$200^{ m WDG}$	3	3	1.23	0.78				/		
2009年度				7	0.72	0.42	\bigvee	\bigvee	\bigvee			

試 残留値(mg/kg)							残留値	(mg/kg)		
作物名 (分析部位)	験ほ	使用量	回数	PHI	フルベン	ジアミド	代謝	†物B	代謝	†物C
実施年度	場数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値
こまつな (茎葉) 2007年度	2	$200^{ m WDG}$	2	1 3 7 14	17.7 16.3 11.7 3.45	11.6 9.35 7.05 2.09				
チンゲンサイ (茎葉) 2007年度	2	$200^{ m WDG}$	2	1 3 7 14	2.24 2.90 1.89 1.42	1.43 1.78 1.35 0.88				
カリフラワー (花蕾) 2007 年度	2	0.4 g/箱 ^{SC} × 1 + 300 ^{WDG}	3	1 3 7	0.73 0.50 0.33	0.45 1.00 0.18				
ブロッコリー (花蕾) 2006年度 2007年度	2	0.4 g/箱 ^{SC} × 1 + 200-300 ^{WDG}	3	1 3 6-7 14 18-20	1.65 0.92 0.58 0.07 0.03	1.07 0.51 0.33 0.03* 0.02*				
なばな (茎葉部) 2008年度	2	0.4 g/セルト レイ ^{SC} ×1 + 150-208 ^{WDG}	3	1 3 7 14	$4.48 \\ 2.65 \\ 0.75 \\ 0.36$	4.05 2.57 0.62 0.24				
はなっこりー (花蕾部及び 茎) 2008 年度	2	0.4 g/セルト レイ ^{SC} ×1 + 200 ^{WDG}	3	1 3 7 14	1.10 0.99 0.70 0.33	1.04 0.86 0.52 0.23				
みずな (茎葉) 2008年度 2009年度	4	150-200 ^{WDG}	2	1 3 7 14	10.7 9.02 6.41 0.45	6.38 5.68 3.87 0.41				
のざわな (茎葉) 2007年度	2	$200^{ m WDG}$	2	1 3 7 14	2.86 2.86 2.25 2.02	2.55 2.53 1.80 1.63				
ごぼう (根部) 2011 年度	2	250-252 WDG	2	1 3 7	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01				
レタス (茎葉) 2002年度	2	$200^{ m WDG}$	3	1 3 7 14	0.94 0.97 0.63 0.91	0.56 0.49 0.46 0.40	0.01 0.02 0.01 0.02	0.01* 0.01* 0.01* 0.01*	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01
レタス (茎葉) 2003年度	1	$200^{ m WDG}$	2	$1 \\ 3 \\ 7 \\ 14 \\ 21$	0.76 0.78 0.51 0.30 0.02	0.66 0.51 0.46 0.28 0.02*	0.01 0.01 <0.01 <0.01 <0.01	0.01* 0.01* <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01
レタス (茎葉) 2007年度	2	0.4 g/箱 ^{SC} × 1 + 200 ^{WDG}	3	1 3 7	5.18 6.20 5.44	2.98 3.64 2.61				
リーフレタス (茎葉) 2004年度	2	200-250 ^{WDG}	2	$1 \\ 3 \\ 7 \\ 14 \\ 21$	9.50 7.42 7.26 5.94 3.06	8.48 6.54 6.03 5.28 2.72	0.20 0.15 0.13 0.11 0.05	0.16 0.12 0.11 0.09 0.04	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01

	試				残留值(mg/kg)						
作物名 (分析部位)	験ほ	使用量	回数	PHI	フルベン	ジアミド	代謝	物B	代謝	†物C	
実施年度	場数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値	
サラダ菜				1	7.17	5.45	0.11	0.09	<0.01	<0.01	
(茎葉) 2003年度	2	$80 \text{-} 150^{\mathrm{WDG}}$	2	3 7	$5.96 \\ 4.73$	$4.66 \\ 3.70$	$0.10 \\ 0.08$	$0.07 \\ 0.06$	<0.01 <0.01	<0.01 <0.01	
2004年度				14	0.65	0.55	0.00	0.00*	<0.01	<0.01	
ねぎ				7	1.13	0.96	0.01	0.01*	< 0.01	< 0.01	
(茎葉)	2	$200^{ m WDG}$	3	14	1.01	0.65	0.01	0.01*	<0.01	<0.01	
2002年度				$\begin{array}{c} 21 \\ 28 \end{array}$	$0.72 \\ 0.25$	$0.37 \\ 0.15$	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	
アスパラガス				1	0.47	0.37					
(若茎)	2	$300^{ m WDG}$	2	3 7	$0.05 \\ 0.03$	0.04 0.02*					
2007年度				14	< 0.05	< 0.02					
にんじん				1	0.06	0.035*					
(根部)	2	300^{WDG}	2	3	0.04	0.025*					
2009年度				7	0.03	0.020*					
セルリー				1	5.34	5.09					
(茎葉)	2	$267 - 281 ^{\mathrm{WDG}}$	2	3 7	4.86	4.27					
2011年度					4.47	4.08					
トマト (果実)	2	$200-300^{\mathrm{WDG}}$	2	$\frac{1}{3}$	$0.25 \\ 0.24$	$0.178 \\ 0.158$	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	
2003年度		200 300	4	7	0.24	0.138	<0.01	<0.01	<0.01	<0.01	
トマト				1	0.07	0.048					
(果実)	2	50 g/400 m³ くん煙	2	3 7	$0.07 \\ 0.06$	$0.038 \\ 0.038$					
2007年度		\ /U/主		14	0.05	0.033				/	
ミニトマト				1	0.41	0.35					
(果実)	2	$300^{ m WDG}$	2	3 7	$0.45 \\ 0.36$	$0.33 \\ 0.32$					
2007年度				14	0.30	0.32 0.25					
ピーマン				1	1.16	0.71	0.01	0.01*	< 0.01	< 0.01	
(果実) 2002年度	2	200-250 ^{WDG}	2	3 7	$0.69 \\ 0.32$	$0.51 \\ 0.26$	0.01 <0.01	0.01* <0.01	<0.01 <0.01	<0.01 <0.01	
ピーマン				1	0.25	0.138	40.01	10.01	40.01	10.01	
(果実)	2	50 g/400 m³ くん煙	2	7	0.07	0.060					
2008年度		、 ////		14	0.03	0.023	/		<u>/</u>		
なす (果実)	2	$200\text{-}250^{\mathrm{WDG}}$	3	$\frac{1}{3}$	$0.40 \\ 0.27$	$0.28 \\ 0.20$					
2006年度		200 250	J	7	0.27 0.12	0.20					
なす		50 g/400 m ³		1	0.06	0.048					
(果実)	2	00 g/400 m くん煙	3	7	0.03	0.023					
2008年度 ししとう				14	<0.01	<0.01	\leftarrow		\leftarrow		
(果実)	2	250-300 ^{WDG}	2	$\frac{1}{3}$	$\frac{2.09}{1.36}$	$1.76 \\ 1.15$				/	
2009年度				7	0.66	0.54	<u>/</u>		<u>/</u>		
甘長とうがら				1	1.44	1.17	/		/		
し (果実)	2	$211-263^{\mathrm{WDG}}$	2	3	0.90	0.78				/	
2009年度				7	0.47	0.37					
きゅうり				1	0.22	0.15					
(果実) 2006年度	2	$300^{ m WDG}$	3	3 7	$0.14 \\ 0.05$	$0.09 \\ 0.03$				/	
2000年度				L '	บ.บอ	0.05	\checkmark	/	V	\angle	

	試				残留值(mg/kg)						
作物名 (分析部位)	験ほ	使用量	回数	PHI	フルベン	ジアミド	代謝	物B	代謝	†物C	
実施年度	場	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値	
きゅうり	数	50 g/400 m ³		1	0.04	0.02*					
(果実) 2008年度	2	、77.3 g/618 m³くん煙	3	3 7	$0.04 \\ 0.02$	0.023* 0.015*					
かぼちゃ		III \ /UÆ		1	0.14	0.10					
(果実)	2	$231\text{-}273^{\mathrm{WDG}}$	2	3 7	$0.08 \\ 0.16$	$0.065 \\ 0.095$					
2012年度				14	0.12	0.09			<u>/</u>		
(果皮を除く果	2	$300^{ m WDG}$	2	1	<0.01 <0.01	<0.01 <0.01					
実) 2007年度	∠	300"20	Δ	3 7	< 0.01	<0.01					
メロン				1	< 0.01	< 0.01					
(果実) 2009年度	2	275-281 ^{WDG}	2	3 7	<0.01 <0.01	<0.01 <0.01					
にがうり				1	0.90	0.51					
(果実) 2008年度	2	300^{WDG}	3	3 7	0.45	0.40					
2009年度				1	0.11	0.09			<u> </u>		
オクラ (果実)	2	250-299 ^{WDG}	2	1 3	$0.98 \\ 0.55$	$0.66 \\ 0.34$					
2009年度		200 200		7	0.11	0.08					
しょうが		$200^{ m WDG}$		1	< 0.01	< 0.01					
(根茎) 2009年度	2	200 м д а	2	3 7	<0.01 <0.01	<0.01 <0.01					
さやえんどう		0.4 g/セルト レイ ^{SC} ×1		1 3	0.59 0.57	0.50 0.51					
(さや) 2008年度	2	+	3	7	0.42	0.31					
		200 ^{WDG} 0.4 g/箱 ^{SC} ×		14	0.15	0.13					
さやいんげん (さや)	2	1 +	3	$\frac{1}{3}$	1.37 1.32	$0.80 \\ 0.73$					
2007年度		200^{WDG}		7	0.75	0.58					
えだまめ		0.4 g/箱 ^{SC} × 1		1	1.68	1.05					
(さや) 2007年度	2	+ 200 ^{WDG}	3	3 7	$\frac{1.60}{1.00}$	$\frac{1.04}{0.75}$					
えだまめ				1	2.13	1.45					
(さや) 2009年度	2	171-180 ^{SC}	3	3 14	$\frac{2.08}{1.87}$	1.36 1.11					
えだまめ (さや)	2	160-196.6	3	1 3	1.56 1.50	1.35 1.08					
2010年度	۷	WDG	0	7	1.14	0.815					
ヤングコーン		O O O WIDG		1 3	<0.01 <0.01	<0.01 <0.01			/		
(可食部) 2008年度	2	$200^{ m WDG}$	2	7 14	<0.01 <0.01	<0.01 <0.01				/	
しょくようほ					<0.01	<0.01					
うずき (果実)	2	$200^{ m WDG}$	2	1 3	< 0.01	< 0.01					
2010年度				7	< 0.01	<0.01		/	<u>/</u>		

	試				残留值(mg/kg)						
作物名	験	使用量	回数	PHI	フルベン	ジアミド	代謝	l物B	代謝	t物C	
(分析部位) 実施年度	ほ場数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値	
しそ (葉) 2008年度	2	200-300 ^{WDG}	2	3ª 7ª 14	35.9 19.9 3.19	27.2 14.2 2.50					
みょうが (花穂) 2008年度 2009年度	2	300^{WDG}	2	1 3 7	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01					
温州みかん (果肉) 2008 年度	2	350 ^{WDG}	2	1 3 14	0.03 0.03 0.03	0.020* 0.018* 0.015*					
温州みかん (果皮) 2008年度	2	350 ^{WDG}	2	1 3 14	3.17 3.12 3.12	2.69 2.61 2.64					
なつみかん (果実) 2008年度	2	250 ^{WDG}	2	1 3 14	0.15 0.18 0.14	0.12 0.14 0.12					
なつみかん (果実) 2010年度	2	300-303 sc	2	1 3 7 14	1.27 1.22 0.89 0.75	0.75 0.71 0.60 0.47					
かぼす (果実) 2008年度	1	308^{WDG}	2	1 3 14	0.17 0.22 0.10	0.17 0.22 0.10					
すだち (果実) 2008年度	1	250 ^{WDG}	2	1 3 14	0.56 0.34 0.29	$0.55 \\ 0.34 \\ 0.28$					
りんご (果実) 2002年度	2	200-250 ^{WDG}	2	7 14 21 45-49	0.410 0.312 0.287 0.185	0.220 0.190 0.198 0.080*	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	
りんご (果実) 2005年度	2	250 ^{WDG}	2	1 3 7	0.38 0.41 0.36	0.35 0.32 0.29					
りんご (果実) 2009年度	2	203-225 ^{SC}	2	1 3 7	0.36 0.29 0.28	0.278 0.220 0.220					
りんご (果実) 2009年度	4	$180\text{-}225^{\mathrm{SC}}$	2	1	0.35	0.205					
日本なし (果実) 2002年度	2	150-200 ^{WDG}	2	7 14 21 28	0.250 0.199 0.163 0.155	0.222 0.183 0.141 0.121	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	
日本なし (果実) 2006年度	1	300 ^{WDG}	2	1 3 7	0.32 0.29 0.31	0.30 0.26 0.26					
西洋なし (果実) 2006年度	1	300 ^{WDG}	2	1 3 7	0.29 0.26 0.13	0.23 0.24 0.13					
日本なし (果実) 2009年度	2	$180^{ m SC}$	2	1 3 7 14	0.21 0.18 0.17 0.15	0.168 0.160 0.128 0.115					

	試						残留値	(mg/kg)		
作物名 (分析部位)	験ほ	使用量	回数	PHI	フルベン	ジアミド	代謝	†物B	代謝	t物C
実施年度	場数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値
日本なし (果実) 2009年度	2	182.7-225 ^{SC}	2	1	0.17	0.15				
もも (果肉) 2003年度	2	200-250 ^{WDG}	2	1 3 7 14	0.012 <0.005 <0.005 <0.005	0.007 <0.005 <0.005 <0.005	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006
もも (果皮) 2003年度	2	200-250 ^{WDG}	2	1 3 7 14	5.25 3.11 3.34 2.12	3.70 2.61 1.79 1.56	0.01* <0.01 <0.01 <0.01	0.008* <0.008 <0.008 <0.008	<0.01 <0.01 <0.01 <0.01	<0.008 <0.008 <0.008 <0.008
もも (果肉) 2009年度	2	360 ^{sc} ×1 樹幹散布	3	1 3 7	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01				
もも (果皮) 2009年度	2	+ 150-200 ^{SC}	3	1 3 7	2.91 2.81 2.23	2.02 2.22 1.74				
ネクタリン (果実) 2006年度	2	200-250 ^{WDG}	2	1 3 7 14	0.43 0.38 0.48 0.27	0.35 0.26 0.31 0.19				
ネクタリン (果実) 2009年度	2	360 ^{SC} ×1 樹幹散布 + 180-200 ^{SC}	3	1 3 14	0.43 0.47 0.30	0.29 0.31 0.195				
すもも (果実) 2007年度	2	400 WDG	2	1 3 7 14	0.85 0.39 0.68 0.57	0.50 0.31 0.36 0.27				
すもも (果実) 2010年度	2	351-360 ^{SC} × 1 樹幹散布 + 180-195 ^{SC}	3	1 3 7	0.03 0.03 0.02	0.025 0.020 0.015*				
うめ (果実) 2007年度	2	$400^{ m WDG}$	2	3 7 14	1.40 1.37 0.88	1.10 1.02 0.71				
うめ (果実) 2010年度	2	360 ^{SC} ×1 樹幹散布 + 152-200 ^{SC}	3	1 3 7	1.00 0.98 0.62	0.81 0.74 0.58				
おうとう (果実) 2006年度	2	250-300 WDG	2	1 3 7 14	0.57 0.43 0.43 0.44	0.48 0.43 0.42 0.38				
おうとう (果実) 2009 年度	2	360 ^{SC} ×1 樹幹散布 + 200 ^{SC}	3	1 3 14	0.49 0.58 0.44	0.29 0.34 0.25				

	試						残留值((mg/kg)		
作物名 (分析部位)	験ほ	使用量	回数	PHI	フルベン	ジアミド	代謝	物B	代謝	†物C
実施年度	場数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値
おうとう (果実) 2009年度	2	360 ^{SC} ×1 樹幹散布 + 210-225 ^{SC}	3	1	1.21	0.76				
いちご (果実) 2003年度	2	$200^{ m WDG}$	2	1 3 7	0.83 0.62 0.49	$0.588 \\ 0.400 \\ 0.288$	<0.01 <0.01 <0.01	<0.008 <0.008 <0.008	<0.01 <0.01 <0.01	<0.008 <0.008 <0.008
いちご (果実) 2006年度	2	50 g/400 m³ くん煙	2	1 3 7 14	0.20 0.19 0.13 0.06	0.15 0.16 0.09 0.05				
ブルーベリー (果実) 2011年度	2	875-933 ^{SC}	2	1 3 7 14	0.93 0.55 0.61 0.55	0.74 0.47 0.50 0.40				
ぶどう (果実) 2006年度	2	250-350 WDG	2	14 21	0.83 0.72	0.63 0.44				
ぶどう (果実) 2009年度	2	$135^{ m SC}$	2	14 21 28	1.12 1.03 0.94	0.57 0.63 0.56				
ぶどう (果実) 2009年度	2	135 ^{SC}	2	14	0.37	0.33				
かき (果実) 2006年 2007年	2	200-250 WDG	2	7	0.07	0.06				
かき (果実) 2009年度	2	360 ^{SC} ×1 樹幹散布 + 200 ^{SC}	3	7 14 21	0.29 0.23 0.12	0.21 0.15 0.09				
キウイフルー ツ (果実) 2010年度	2	160-188 ^{SC}	3	7 14 21	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01				
茶 (荒茶) 2003年度	2	$200{}^{ m WDG}$	1	7 10 14 21	29.0 21.4 16.0 2.88	16.1 14.1 10.0 2.19	0.10 0.06 <0.06 <0.06	0.07* 0.06* <0.06 <0.06	<0.006 <0.006 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006
茶 (浸出液) 2003年度	2	200 WDG	1	7 10 14 21	3.38 2.44 1.98 0.288	1.893 1.582 1.185 0.271	<0.031 <0.031 <0.031 <0.031	<0.031 <0.031 <0.031 <0.031	<0.030 <0.030 <0.030 <0.030	<0.030 <0.030 <0.030 <0.030
茶 (荒茶) 2009年度	2	360 ^{SC}	1	7 14 21	32.7 12.7 3.7	24.7 8.7 2.2				
茶 (荒茶) 2009年度 注)・#	4	360 ^{SC}	1	7	34.9	21.2				

注)・散布には、SC:フロアブル剤、WDG:顆粒水和剤を使用した。 ・一部に定量限界未満を含むデータの平均を計算する場合は、定量限界値を検出したものとして計

- 算し、*印を付した。
 ・全てのデータが定量限界未満の場合は定量限界値の平均に<を付して記載した。
 ・農薬の使用時期(PHI)が登録又は申請された使用方法から逸脱している場合は、PHI に ª を付 した。

<別紙4:作物残留試験成績(海外)>

	試		794/124	(1四ノド)			残留值((mg/kg)		
作物名	験	使用量	回数	PHI	フルベン	ジアミド	代謝			計
(分析部位)	ほ	使用里 (g ai/ha)	(回)	(日)) /V· \V	✓ / ベ r	1人的1	170/D		p
実施年度	場	(g al/lia)		(11)	最高値	平均値	最高値	平均値	最高値	平均値
	数				AX III IIE	1 1011	AX III IIE		双间匝	1 + 15 115
	1	107 - 109 sc	4	1	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$105 \text{-} 108 ^{\mathrm{SC}}$	4	1	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	104-106 SC	4	1	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
とうもろこし	1	104-108 SC	4	2	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
(子実+穂軸)	1	106-107 sc	4	1	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
2004年度	1	105 sc	4	1	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010
	1	106-113 ^{SC}	4	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	1	105-108 SC	4	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	1	105-108 SC	4	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	1	104-111 SC	4	1	<0.010	<0.010	<0.010	<0.010 <0.010	<0.010	<0.010
とうもろこし	1	105-106 ^{SC}	4	1	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010	<0.010 0.012	<0.010 <0.010
(子実+穂軸)				3	<0.010	<0.010	<0.010	<0.010	<0.012	<0.010
2005年度	1	$105 \text{-} 109 ^{\mathrm{SC}}$	4	7	0.010	<0.010	<0.010	<0.010	0.014	0.010
				10	0.011	< 0.010	< 0.010	< 0.010	0.013	0.012
	1	$33\text{-}34^{\mathrm{WDG}}$	3	1	0.23	0.22	< 0.01	< 0.01	0.23	0.22
ブロッコリー	1	$34\mathrm{WDG}$	3	1	0.16	0.16	0.01	< 0.01	0.17	0.16
(花蕾)				1	0.12	0.09	< 0.010	< 0.010	0.12	0.11
2004年度	1	$33\text{-}34\mathrm{WDG}$	3	3	0.12	0.11	< 0.010	< 0.010	0.12	0.11
20011	1	00 01	0	7	0.12	0.11	< 0.010	< 0.010	0.12	0.11
				10	0.07	0.06	< 0.010	< 0.010	0.07	0.06
カリフラワー	1	33-34 WDG	3	1	0.01	<0.01	<0.01	<0.01	0.01	<0.01
(花蕾) 2004年度	1	33-35 WDG	3	1	0.02	0.01	< 0.01	< 0.01	0.02	0.02
2004平/支	1	34-36 WDG	3	1	0.03	0.02	< 0.01	< 0.01	0.03	0.03
	1	35 WDG	3	1	0.18	0.16	<0.01	< 0.01	0.18	0.16
	1	33-34 WDG	3	1	0.25	0.22	<0.01	<0.01	0.25	0.23
キャベツ	1	34 WDG 34 WDG	3	1	0.39	0.30	0.02	0.02	0.39	0.30
(葉球)	1	33-34 WDG	3	1	0.12 0.25	$0.10 \\ 0.24$	<0.01 <0.01	<0.01 <0.01	$0.12 \\ 0.25$	0.11 0.24
2004年度	1	55°54 "25	ა	1	0.25	0.24 0.24	<0.01	<0.01	0.25	0.24
20011/2				3	0.03	0.24	<0.01	<0.01	0.04	0.24
	1	$33-35\mathrm{WDG}$	3	7	0.02	0.01	< 0.01	< 0.01	0.02	0.01
				10	0.03	0.02	< 0.01	< 0.01	0.03	0.02
	1	$51-53^{\mathrm{WDG}}$	5	1	0.12	0.11	< 0.01	< 0.01	0.12	0.11
	1	$50-51^{\mathrm{WDG}}$	5	1	1.20	0.69	< 0.01	< 0.01	1.16	0.69
A+25 > -	1	50 WDG	5	1	0.71	0.66	< 0.01	< 0.01	0.71	0.66
結球レタス	1	50-51 WDG	5	1	0.67	0.66	< 0.01	< 0.01	0.67	0.66
(茎葉)	1	$51-52\mathrm{WDG}$	5	1	0.97	0.97	< 0.01	< 0.01	0.98	0.97
2004年度				1	0.47	0.36	< 0.01	< 0.01	0.48	0.37
	1	$53^{ m WDG}$	5	3 7	$0.43 \\ 0.31$	$0.34 \\ 0.28$	<0.01 <0.01	<0.01 <0.01	$0.43 \\ 0.31$	$0.34 \\ 0.28$
				10	$0.31 \\ 0.21$	$0.28 \\ 0.16$	<0.01	<0.01	$0.31 \\ 0.21$	$0.28 \\ 0.17$
				10	0.21	0.10	<0.01	<0.01	0.21 0.35	0.17
		10 FO WIDG		3	1.03	0.96	<0.01	<0.01	1.03	0.92
	1	$48-53^{\mathrm{WDG}}$	5	7	0.15	0.10	< 0.01	< 0.01	0.15	0.11
リーフレタス				10	0.12	0.08	< 0.01	< 0.01	0.09	0.05
(茎葉)	1	$49-51^{\mathrm{WDG}}$	5	1	5.89	4.58	0.02	0.01	5.90	4.59
2004年度	1	$49-51^{\mathrm{WDG}}$	5	1	1.27	1.07	0.01	< 0.01	1.28	1.08
	1	$50-51^{\mathrm{WDG}}$	5	1	1.14	1.00	< 0.01	< 0.01	1.15	1.00
	1	50-51 WDG	5	1	1.63	1.60	< 0.01	< 0.01	1.63	1.61
	1	$50-51 ^{\mathrm{WDG}}$	5	1	4.79	3.30	0.02	0.01	4.80	3.38

作物名 (分析部位) 実施年度 験 ほ 場 数 使用量 (g ai/ha) 回数 (回) PHI (日) フルベンジアミド 代謝物B 最高値 平均値 最高値 平均値 よのもち 1 50-51 WDG 5 3 0.65 0.54 <0.01 <0.01 セロリ 5 7 0.91 0.79 0.01 <0.01 セロリ 10 0.95 0.86 <0.01 <0.01	最高値 1.21 0.65 0.92 0.95	·計 平均値 0.92
大野市部位 は 場数	最高値 1.21 0.65 0.92 0.95	平均値 0.92
実施年度 場 場高値 平均値 最高値 平均値 数 1 1 1 1 1 1 1 1 1 1 2 0	1.21 0.65 0.92 0.95	0.92
1 50-51 WDG 5 1 1 1.20 0.91 <0.01 <0.01 3 0.65 0.54 <0.01 <0.01 7 0.91 0.79 0.01 0.01 10 0.95 0.86 <0.01 <0.01	0.65 0.92 0.95	
1 50-51 WDG 5 3 0.65 0.54 <0.01 <0.01 7 0.91 0.79 0.01 0.01 10 0.95 0.86 <0.01 <0.01	0.65 0.92 0.95	
セロリ	0.92 0.95	
보다 기 10 0.95 0.86 <0.01	0.95	$0.54 \\ 0.80$
		0.80
(茎葉) 1 49-51 WDG 5 1 0.81 0.70 <0.01 <0.01	0.81	0.70
2004年度 1 50-52 WDG 5 1 2.31 1.95 <0.01 <0.01	2.31	1.95
1 50-51 WDG 5 1 2.26 1.26 <0.01 <0.01	2.09	1.26
1 49-51 WDG 5 1 1.55 0.86 <0.01 <0.01	1.32	0.86
1 50·51 WDG 5 1 2.62 2.42 <0.01 <0.01	2.63	2.42
1 4.93 4.46 <0.01 <0.01	4.93	4.46
1 49-52 WDG 5 3 3.97 3.66 <0.01 <0.01	3.97	3.66
2.91 2.76 <0.01 <0.01	2.92	2.76
ほうれんそう 10 1.62 1.40 <0.01 <0.01	1.62	1.39
(茎葉) 1 51 WDG 5 1 3.74 3.60 <0.01 <0.01	3.75	3.62
2004年度 1 51-52 WDG 5 1 6.72 6.34 0.02 0.02 1 50 WDG 5 1 3.27 2.82 0.01 0.01	6.73	6.36
	3.28 3.12	2.83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.12	2.89 5.51
1 30 31 32 3 1 3.89 3.49 0.02 0.02 1 1 0.031 0.025 <0.010 <0.010	0.031	0.026
3 0039 0090 <0010 <0010	0.031	0.020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.012	0.010
きゅうり 10 0.013 0.012 <0.010 <0.010	0.014	0.013
(果実) 1 52-53 WDG 5 1 0.012 <0.010 <0.010 <0.010	0.012	< 0.010
2004年度 1 53-54 WDG 5 1 0.025 0.024 <0.010	0.026	0.025
1 51-59 WDG 5 1 <0.010 <0.010 <0.010 <0.010	< 0.010	< 0.010
1 52-55 WDG 5 1 <0.010 <0.010 <0.010 <0.010	< 0.010	< 0.010
1 52-53 WDG 5 1 0.014 0.012 <0.010 <0.010	0.015	0.014
1 0.016 0.012 <0.010 <0.010	0.019	0.015
1 53 WDG 5 3 0.012 0.012 <0.010 <0.010	0.014	0.014
7 0.011 <0.010 <0.010 <0.010	0.013	0.011
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.013	0.010
(里主)	0.038	0.030
2004年度	0.096	0.094
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.036	0.023
1 52-53 WDG 5 1 0.066 0.054 <0.010 <0.010	0.043	0.043
1 52-53 WDG 5 1 0.064 0.052 <0.010 <0.010	0.066	0.054
メロン	1	
(果肉) 1 52-53 WDG 5 1 <0.010 <0.010 <0.010 <0.010	< 0.010	< 0.010
2004年度 2004年度		
1 0.013 <0.010 <0.010 <0.010	0.014	0.011
1 53 WDG 5 3 0.012 0.010 <0.010 <0.010	0.014	0.013
$\frac{1}{2} \frac{1}{2} \frac{1}$	< 0.010	< 0.010
(里宝) 10 <0.010 <0.010 <0.010 <0.010	< 0.010	< 0.010
2004年度 1 51-53 *** 5 1 0.015 0.012 <0.010 <0.010	0.017	0.014
1 50-64 5 1 <0.010 <0.010 <0.010 <0.010	0.011	<0.010
1 53 WDG 5 1 0.011 <0.010 <0.010 <0.010	0.013	0.010
1 52-53 WDG 5 1 0.043 0.038 <0.010 <0.010	0.045	0.040
3 0.949 0.846 <0.010 <0.010 7 0.966 0.980 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	0.950 0.997	$0.848 \\ 0.982$
$\begin{bmatrix} 49929 \\ 1 \end{bmatrix}$	0.997	0.982
(米美)	0.732	0.628
2004年度 1 139-142 sc 3 7 1.003 0.992 <0.010 <0.010	1.01	0.996
1 140-141 SC 3 7 0.576 0.526 <0.010 <0.010	0.578	0.527

	試						残留値((mg/kg)		
作物名	験	 使用量	回数	PHI	フルベン	ジアミド		₩B	合	 計
(分析部位)	ほ	(g ai/ha)		(日)	770.3	V / \ I'	1 7 1931	1/0/10		p I
実施年度	場数	(8 (1) 11(1)	()—//	(,,,,	最高値	平均値	最高値	平均値	最高値	平均値
	1	140-141 ^{SC}	3	7	0.601	0.596	< 0.010	< 0.010	0.603	0.598
	1	138-140 sc	3	7	0.894	0.863	< 0.010	< 0.010	0.896	0.865
	1	141-143 SC	3	7	0.989	0.981	<0.010	<0.010	0.991	0.983
	1	140-143 SC	3	7	0.529	0.496	<0.010	<0.010	0.531	0.498
	1	134-142 SC 137-142 SC	3	7	0.633	0.582	<0.010	<0.010	0.635	0.584 0.160
	1	138-145 SC	3	7	$0.161 \\ 0.250$	0.158 0.242	<0.010 <0.010	<0.010 <0.010	0.163 0.252	0.100
	1	140-141 SC	3	7	0.230	0.242	<0.010	<0.010	0.200	0.244
	1	140-141 ^{SC}	3	7	0.566	0.522	< 0.010	< 0.010	0.567	0.525
				3	0.248	0.194	< 0.010	< 0.010	0.249	0.195
	1	138-140 ^{SC}	3	7	0.200	0.174	< 0.010	< 0.010	0.201	0.176
	1	156-140		10	0.172	0.141	< 0.010	< 0.010	0.173	0.142
		~~		14	0.202	0.150	< 0.010	< 0.010	0.203	0.152
	1	141-142 SC	3	7	0.200	0.154	<0.010	<0.010	0.201	0.156
	1	140-142 SC	3	7	0.241	0.216	<0.010	<0.010	0.242	0.218
	1	$141 - 142 ^{\mathrm{SC}}$ $140 ^{\mathrm{SC}}$	3	7	0.230	0.215	<0.010	<0.010	0.231	0.216
	1	140 SC	3	7	0.199 0.199	0.194 0.187	<0.010 <0.010	<0.010 <0.010	0.200 0.201	0.196 0.188
	1	140-141 SC	3	7	0.133	0.196	<0.010	<0.010	0.201	0.198
t t	1	140-141 SC	3	7	0.165	0.164	<0.010	<0.010	0.166	0.166
(果実)	1	139-141 ^{SC}	3	7	0.302	0.278	< 0.010	< 0.010	0.303	0.280
2004年度	1	138-141 ^{SC}	3	7	0.200	0.198	< 0.010	< 0.010	0.202	0.199
	1	$139 \text{-} 142 \mathrm{sc}$	3	7	0.153	0.138	< 0.010	< 0.010	0.154	0.139
	1	$139 \text{-} 140 ^{\mathrm{SC}}$	3	7	0.221	0.186	< 0.010	< 0.010	0.222	0.187
	1	$140 \text{-} 142 ^{\mathrm{SC}}$	3	7	0.319	0.296	< 0.010	< 0.010	0.320	0.297
	1	140 - $142 \mathrm{sc}$	3	7	0.319	0.296	< 0.010	< 0.010	0.320	0.297
	1	$139 \cdot 142 {}^{\mathrm{SC}}$	3	7	0.345	0.305	< 0.010	< 0.010	0.346	0.306
	1	139-142 SC	3	7	0.281	0.278	< 0.010	< 0.010	0.282	0.280
	1	138-140 sc	3	7	0.394	0.334	<0.010	<0.010	0.395	0.336
	1	140-141 SC	3	7	0.260	0.214	<0.010	<0.010	0.261	0.216
	1	138-140 ^{SC}	3	7	0.397	0.383	<0.010	<0.010	0.438	0.381
				3 7	$0.045 \\ 0.017$	$0.032 \\ 0.016$	<0.010 <0.010	<0.010 <0.010	0.046 0.018	0.033 0.018
	1	$140\mathrm{^{SC}}$	3	10	0.020	0.017	<0.010	<0.010	0.010	0.019
				14	0.013	0.010	< 0.010	< 0.010	0.014	0.012
	1	139^{sc}	3	7	0.437	0.380	< 0.010	< 0.010	0.438	0.381
	1	139 - 140 sc	3	7	0.501	0.488	< 0.010	< 0.010	0.502	0.490
プラム	1	138 sc	3	7	0.030	0.028	< 0.010	< 0.010	0.031	0.030
(果実)	1	138-144 SC	3	7	0.032	0.027	<0.010	<0.010	0.033	0.028
2004年度	1	139-143 SC	3	7	0.053	0.048	<0.010	<0.010	0.054	0.050
	1	139-141 SC	3	7	0.036	0.034	<0.010	<0.010	0.037	0.036
	1	141 ^{SC} 137-140 ^{SC}	3	7	0.144 0.016	0.126 0.014	<0.010 <0.010	<0.010	0.145 0.017	0.128
	1	137-140 sc 141-142 sc	3	7	0.016	0.014 0.012	<0.010	<0.010 <0.010	0.017	0.015 0.014
	1	138-143 SC	3	7	0.013	0.012	<0.010	<0.010	0.014	0.014
	1	139-142 SC	3	7	0.070	0.060	<0.010	<0.010	0.032	0.061
		100 111	,	10	0.41	0.32	<0.010	<0.010	0.41	0.32
		105 107 90	0	22	0.21	0.16	< 0.01	< 0.01	0.22	0.17
綿実	1	$105 \text{-} 107 ^{\mathrm{SC}}$	3	26	0.18	0.14	< 0.01	< 0.01	0.18	0.14
(子実)				35	0.13	0.10	< 0.01	< 0.01	0.13	0.10
2004年度	1	104-105 sc	3	26	0.19	0.11	< 0.01	< 0.01	0.19	0.18
	1	104-107 SC	3	28	0.03	0.02	<0.01	<0.01	0.04	0.02
	1	$104 \cdot 105 \mathrm{sc}$	3	26	0.37	0.32	< 0.01	< 0.01	0.38	0.32

	試							mg/kg)		
作物名	験	使用量	回数	PHI	フルベン	ジアミド	代謝	物B	合	計
(分析部位) 実施年度	ほ場数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値
	1	103-107 ^{SC}	3	28	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	1	$107 \text{-} 108 \mathrm{sc}$	3	27	0.02	0.02	< 0.01	< 0.01	0.02	0.02
	1	$104 \text{-} 105 ^{\mathrm{SC}}$	3	28	0.25	0.25	< 0.01	< 0.01	0.26	0.25
	1	$104 \text{-} 105 ^{\mathrm{SC}}$	3	28	0.12	0.12	< 0.01	< 0.01	0.12	0.12
	1	$104\text{-}107^{\mathrm{SC}}$	3	28	0.28	0.20	< 0.01	< 0.01	0.28	0.20
綿実	1	$105^{ m SC}$	3	28	0.11	0.10	< 0.01	< 0.01	0.11	0.10
(子実)	1	$104 \cdot 106 \mathrm{sc}$	3	27	1.00	0.88	< 0.01	< 0.01	1.00	0.89
2005年度	1	$104 \text{-} 105 ^{\mathrm{SC}}$	3	28	0.12	0.10	< 0.01	< 0.01	0.12	0.10
	1	$140^{ m SC}$	3	$7 \\ 14 \\ 21 \\ 28$	0.050 0.031 0.044 0.043	0.050 0.022 0.042 0.040	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010	0.052 0.033 0.046 0.045	0.052 0.024 0.044 0.043
	1	138-139 sc	3	14	0.055	0.048	< 0.010	< 0.010	0.057	0.050
	1	139-140 sc	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$139 \cdot 140 { m sc}$	3	14	< 0.010	< 0.010	< 0.010	< 0.010	0.010	< 0.010
	1	$139 \cdot 142 { m sc}$	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$140 \text{-} 142 ^{\mathrm{SC}}$	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$140 \text{-} 141 ^{\mathrm{SC}}$	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	140-141 ^{SC}	3	14	0.022	0.020	< 0.010	< 0.010	0.024	0.022
アーエンノじ	1	$138 \cdot 141 { m sc}$	3	14	0.017	0.012	< 0.010	< 0.010	0.024	0.022
アーモンド (黒字)	1	$138 \cdot 141 { m sc}$	3	14	0.023	0.020	< 0.010	< 0.010	0.025	0.023
(果実)	1	$138 \text{-} 139 \mathrm{sc}$	3	14	0.055	0.048	< 0.010	< 0.010	0.057	0.050
2004年度	1		3	7	0.050	0.050	< 0.010	< 0.010	0.052	0.052
	1	$140\mathrm{sc}$	3	14	0.031	0.022	< 0.010	< 0.010	0.033	0.024
	1	140	3	21	0.044	0.042	< 0.010	< 0.010	0.046	0.044
	1		3	28	0.043	0.040	< 0.010	< 0.010	0.045	0.043
	1	139-140 sc	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	139-140 sc	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	139-142 sc	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	140-142 sc	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	140-141 SC	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	140-141 SC	3	14	0.022	0.020	< 0.010	<0.010	0.024	0.022
	1	138-141 SC	3	14	0.017	0.012	<0.010	<0.010	0.019	0.014
	1	138-141 ^{SC}	3	14	0.023	0.020	<0.010	<0.010	0.025	0.023
				7 14	$0.012 \\ 0.012$	0.011 <0.010	<0.010 <0.010	<0.010 <0.010	$0.014 \\ 0.013$	0.013 <0.010
	1	$136 ext{-} 137 ext{sc}$	3	$\frac{14}{21}$	0.012 0.012	<0.010	<0.010	<0.010	0.013	0.010
				$\frac{21}{28}$	< 0.012	<0.010	<0.010	<0.010	<0.013	< 0.010
	1	139-145 ^{SC}	3	13	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	1	140-143 sc	3	13	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	1	$140^{\circ}143^{\circ}$	3	13	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010
ペカン	1	136-186 SC	3	13	< 0.010	< 0.010	<0.010	< 0.010	<0.010	< 0.010
(果実)	1	135-140 SC	3	14	0.012	< 0.010	< 0.010	< 0.010	0.013	< 0.010
2004年度	1	139-141 ^{SC}	3	14	< 0.010	< 0.010	< 0.01	< 0.01	< 0.010	< 0.010
20011/2	1	$141 { m sc}$	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	139-140 SC	3	12	0.028	0.024	< 0.01	< 0.01	0.029	0.026
	1	138-139 sc	3	12	0.018	0.016	< 0.010	< 0.010	0.019	0.018
	1	139-145 sc	3	13	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$140 \cdot 143 { m sc}$	3	13	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$142 ext{-} 143 ext{sc}$	3	13	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$136 \text{-} 186 ^{\mathrm{SC}}$	3	13	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

	試						残留值	(mg/kg)		
作物名 (分析部位)	験ほ	使用量、	回数	PHI	フルベン	ジアミド	代謝	物B	合	計
実施年度	場 数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	最高値	平均値
	1		3	7	0.012	0.011	< 0.010	< 0.010	0.014	0.013
	1	$136-137 { m sc}$	3	14	0.012	< 0.010	< 0.010	< 0.010	0.013	< 0.010
	1	100 107	3	21	0.012	< 0.010	< 0.010	< 0.010	0.013	0.010
	1		3	28	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$135 \cdot 140 { m sc}$	3	14	0.012	< 0.010	< 0.010	< 0.010	0.013	< 0.010
	1	$139 \cdot 141 { m sc}$	3	14	< 0.010	< 0.010	< 0.01	< 0.01	< 0.010	< 0.010
	1	$141 { m sc}$	3	14	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	1	$139 \cdot 140 { m sc}$	3	12	0.028	0.024	< 0.01	< 0.01	0.029	0.026
	1	$138 \cdot 139 { m sc}$	3	12	0.018	0.016	< 0.010	< 0.010	0.019	0.018
		1 100 100		1	2.15	2.13	0.03	0.03	2.19	2.16
	1	33-35 WDG	3	3	1.81	1.80	0.04	0.04	1.85	1.83
	1	55-55)	7	1.52	1.34	0.04	0.04	1.56	1.38
ー ココカ. ド				9	0.21	0.16	< 0.01	< 0.01	1.61	1.36
マスタード	1	$34\mathrm{WDG}$	3	1	2.16	2.12	< 0.01	< 0.01	2.17	2.13
グリーン	1	$34\mathrm{WDG}$	3	1	1.54	1.53	< 0.01	< 0.01	1.55	1.54
(茎葉)	1	$34\text{-}35^{\mathrm{WDG}}$	3	1	3.01	2.75	< 0.01	< 0.01	3.02	2.76
2004年度	1	$33\mathrm{WDG}$	3	1	0.76	0.72	< 0.01	< 0.01	0.77	0.72
	1	$34\mathrm{^{WDG}}$	3	1	3.15	2.82	0.02	0.01	3.16	2.83
	1	$34\mathrm{^{WDG}}$	3	1	1.51	1.32	< 0.01	< 0.01	1.51	1.33
	1	$33\text{-}34^{\mathrm{WDG}}$	3	1	1.30	1.28	< 0.01	< 0.01	1.30	1.28

注)・散布には、SC:フロアブル剤、WDG:顆粒水和剤が用いられた。 ・全てのデータが定量限界未満の場合は、定量限界値の平均に<を付して記載した。

<別紙5:後作物残留試験成績>

	前作			試				残留値((mg/kg)		
作物名	使用量	回数	作物名	験 ほ	PHI (日)	フルベンジアミド		代謝物B		代謝物C	
実施年	使用重 (g ai/ha)	(回)	実施年	場数		最高値	平均値	最高値	平均値	最高値	平均値
			だいこん (葉部) 2003 年度	1	111	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
キャベツ 2003年度	600	3	だいこん (根部) 2003 年度	1	111	<0.005	<0.005	<0.006	<0.006	<0.006	<0.006
			レタス (茎葉) 2003年度	1	76	<0.005	<0.005	<0.006	<0.006	<0.006	<0.006

注)散布には顆粒水和剤を使用した。

<別紙6:畜産物残留試験成績>

①産卵鶏

			残留量	$(\mu g/g)$						
投与量	0.02 mg/k	g飼料相当	0.1 mg/kg	, 飼料相当	0.5 mg/kg	; 飼料相当				
分析対象	フルベン	/ _=0144 D \	フルベン	/ \>=644	フルベン	/ _=64.4-6 D .				
物質	ジアミド	代謝物 Pb	ジアミド	│ 代謝物 Pʰ	ジアミド	代謝物 Pb				
БР a	-	-	-	-	0.06°	<0.003c				
11111111111111111111111111111111111111	0.01 (0)	<0.000 (n)	0.07(2),	<0.01 (0)	0.27, 0.29,	0.00 (0)				
脂肪	0.01 (3)	<0.003 (3)	0.06	<0.01 (3)	0.25	0.02 (3)				
日二 は本	<0.003 (3)	<0.003 (3)	<0.02(2),	<0.003 (3)	0.07(2),	<0.003 (3)				
肝臓	<0.003 (3)	<0.003 (3)	0.01	<0.003 (3)	0.06	<0.003 (3)				
<i>/</i> ** r k 1	-0.000 (a)	-0.000 (a)	-0.000 (a)	<0.000 (a)	<0.01、	-0.000 (n)				
筋肉	<0.003 (3)	<0.003 (3)	<0.003 (3)	<0.003 (3)	0.01(2)	<0.003 (3)				
皮膚	<0.01 (3)	<0.003 (3)	0.03、 0.02 (2)	<0.003 (3)	0.11 (3)	<0.01 (3)				
		l	J 0.02 (2)	1						

- a:28日間反復投与試験における最終投与1日後の最大残留値
- b: 代謝物 P の残留値は未変化のフルベンジアミド相当量として示す(換算係数 1.285)。
- -: 試料なし
- c: 12 羽の平均値
- 注)()内の数字はサンプル数を示す。

②泌乳牛

				残留量((μg/g)			
投与量	2.5 mg/k	g飼料相当	7.5 mg/k	g飼料相当	30 mg/kg	飼料相当	50 mg/kg 1	飼料相当
分析対象	フルベン	/ \>=\d+\+\-, T)\-	フルベン	/ N=0446- DL	フルベン	代謝物	フルベン	代謝物
物質	ジアミド	代謝物 Pb	ジアミド	代謝物 Pb	ジアミド	P^{b}	ジアミド	P^{b}
乳汁a	-	•	-	•	-	•	$0.16^{\rm c}$	$0.01^{\rm c}$
	0.03	< 0.01	0.10	< 0.01	0.52	< 0.01	0.58	< 0.01
肝臓	0.06	< 0.01	0.23	< 0.01	0.36	< 0.01	0.33	< 0.01
	0.04	< 0.01	0.11	< 0.01	0.26	< 0.01	0.47	< 0.01
	0.03	< 0.01	0.10	< 0.01	0.54	0.01	0.57	0.02
腎臓	0.06	< 0.01	0.20	< 0.01	0.39	0.01	0.33	0.01
	0.05	< 0.01	0.13	< 0.01	0.28	0.01	0.42	0.01
	< 0.01	< 0.01	0.02	< 0.01	0.08	< 0.01	0.12	0.01
筋肉	< 0.01	< 0.01	0.04	< 0.01	0.06	< 0.01	0.09	< 0.01
	0.01	< 0.01	0.03	< 0.01	0.06	< 0.01	0.14	0.02
	0.05	< 0.01	0.13	0.02	0.66	0.07	0.82	0.08
脂肪(1)d	0.08	< 0.01	0.15	0.02	0.51	0.07	0.36	0.06
	0.06	< 0.01	0.16	0.01	0.53	0.04	0.77	0.13
	0.06	< 0.01	0.19	0.03	0.76	0.17	1.2	0.16
脂肪(2)d	0.10	< 0.01	0.25	0.02	0.60	0.11	0.75	0.23
	0.09	< 0.01	0.16	0.02	0.61	0.12	1.2	0.19
脂肪(3)d	0.06	< 0.01	0.22	0.02	0.63	0.15	1.1	0.21

0.10	0.01	0.27	0.03	0.63	0.11	0.76	0.17
0.10	< 0.01	0.16	0.03	0.67	0.14	1.2	0.27

- a: 29 日間反復投与試験における初回投与から 28 日後の最大残留値
- b: 代謝物 P の残留値は未変化のフルベンジアミド相当量として示す(換算係数 1.285)。
- -: 試料なし
- c:2頭の平均値
- d:(1)皮下脂肪、(2)大網脂肪、(3)腎周囲脂肪

<別紙7:推定摂取量>

- 75 37/14 1	· 1 IT /C 1 /								
	#157/H		平均	小児(1		1	婦のこれへ	高齢者(6	
作物名	残留値	(体里:f ff	55.1 kg) 摂取量	(体 <u>車</u> :1 ff	6.5 kg) 摂取量	(体里:5 ff	8.5 kg) 摂取量	(体里:5 ff	6.1 kg) 摂取量(μg/
	(mg/kg)	II (g/人/日)	(μg/人/日)	II (g/人/日)	(μg/人/日)	II (g/人/日)	(μg/人/日)	II (g/人/日)	
そば	2.16	1.1	2.38	0.5	1.08	1.8	3.89	1.1	2.38
大豆	0.063	39	2.46	20.4	1.29	31.3	1.97	46.1	2.90
あずき	0.025	2.4	0.06	0.8	0.02	0.8	0.02	3.9	0.10
さといも	0.01	5.2	0.05	1.5	0.02	1.4	0.01	7.6	0.08
だいにん(葉)	3.50	33	0.66	11.4	0.23	20.6	0.41	45.7	0.91
だいにん(根)	0.02	1.7	5.95	0.6	2.10	3.1	10.85	2.8	9.80
かぶ (葉)	12.9	2.8	0.11	0.8	0.03	0.1	0.00	5	0.20
かぶ (根)	0.04	0.3	3.87	0.1	1.29	0.1	1.29	0.6	7.74
西洋ワサビ	0.045	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00
はくさい	1.64	17.7	29.03	5.1	8.36	16.6	27.22	21.6	35.42
キャベツ	0.78	24.1	18.80	11.6	9.05	19	14.82	23.8	18.56
こまつな	11.6	5	58.00	1.8	20.88	6.4	74.24	6.4	74.24
きょうな	6.38	2.2	14.04	0.4	2.55	1.4	8.93	2.7	17.23
チンゲンサイ	1.78	1.8	3.20	0.7	1.25	1.8	3.20	1.9	3.38
カリフラワー	1	0.5	0.50	0.2	0.20	0.1	0.10	0.5	0.50
ブロッコリー	1.07	5.2	5.56	3.3	3.53	5.5	5.89	5.7	6.10
その他の アブラナ科野菜	4.05	3.4	13.77	0.6	2.43	0.8	3.24	4.8	19.44
レタス	8.48	9.6	81.41	4.4	37.31	11.4	96.67	9.2	78.02
ねぎ	0.96	9.4	9.02	3.7	3.55	6.8	6.53	10.7	10.27
アスパラガス	0.37	1.7	0.63	0.7	0.26	1	0.37	2.5	0.93
にんじん	0.035	18.8	0.66	14.1	0.49	22.5	0.79	18.7	0.65
セロリ	5.09	1.2	6.11	0.6	3.05	0.3	1.53	1.2	6.11
トマト	0.35	32.1	11.24	19	6.65	32	11.20	36.6	12.81
ピーマン	0.71	4.8	3.41	2.2	1.56	7.6	5.40	4.9	3.48
ナス	0.28	12	3.36	2.1	0.59	10	2.80	17.1	4.79
その他のなす科野菜	1.76	1.1	1.94	0.1	0.18	1.2	2.11	1.2	2.11
きゅうり	0.15	20.7	3.11	9.6	1.44	14.2	2.13	25.6	3.84
かぼちゃ	0.1	9.3	0.93	3.7	0.37	7.9	0.79	13	1.30
その他の うり科野菜	0.51	2.7	1.38	1.2	0.61	0.6	0.31	3.4	1.73
おくら	0.66	1.4	0.92	1.1	0.73	1.4	0.92	1.7	1.12
			l		l	L	L	L	L

作物名	残留値 (mg/kg)	国民平均 (体重:55.1 kg)		小児(1~6 歳) (体重:16.5 kg)		妊婦 (体重:58.5 kg)		高齢者(65 歳以上) (体重:56.1 kg)	
		ff	摂取量	ff	摂取量	ff	摂取量	ff	摂取量(µg/
	0.71	(g/人/日)	(µg/人/日)	(g/人/日)	(μg/人/日)	(g/人/日)	(μg/人/日)	(g/人/日)	人(日)
未成熟えんどう	0.51	1.6	0.82	0.5	0.26	0.2	0.10	2.4	1.22
未成熟いがが	0.8	2.4	1.92	1.1	0.88	0.1	0.08	3.2	2.56
えだまめ	1.45	1.7	2.47	1	1.45	0.6	0.87	2.7	3.92
その他の野菜	0.615	13.4	8.24	6.3	3.87	10.1	6.21	14.1	8.67
みかん	0.02	17.8	0.36	16.4	0.33	0.6	0.01	26.2	0.52
なっみかん	0.75	1.3	0.98	0.7	0.53	4.8	3.60	2.1	1.58
その他の	0.55	5.9	3.25	2.7	1.49	2.5	1.38	9.5	5.23
かんきつ			9 .2 9		1.10	2. 9	1.50	0.0	3. 2 3
りんご	0.35	24.2	8.47	30.9	10.82	18.8	6.58	32.4	11.34
日本なし	0.30	6.4	1.92	3.4	1.02	9.1	2.73	7.8	2.34
西洋なし	0.24	0.6	0.14	0.2	0.05	0.1	0.02	0.5	0.12
44	0.01	3.4	0.03	3.7	0.04	5.3	0.05	4.4	0.04
ネクタリン	0.35	0.1	0.04	0.1	0.04	0.1	0.04	0.1	0.04
スモモ	0.50	1.1	0.55	0.7	0.35	0.6	0.30	1.1	0.55
ウメ	1.1	1.4	1.54	0.3	0.33	0.6	0.66	1.8	1.98
おうとう	0.76	0.4	0.30	0.7	0.53	0.1	0.08	0.3	0.23
イチゴ	0.59	5.4	3.19	7.8	4.60	5.2	3.07	5.9	3.48
ブルーベリー	0.74	1.1	0.81	0.7	0.52	0.5	0.37	1.4	1.04
ブドウ	0.63	8.7	5.48	8.2	5.17	20.2	12.73	9	5.67
かき	0.21	9.9	2.08	1.7	0.36	3.9	0.82	18.2	3.82
茶	24.7	6.6	163.02	1	24.70	3.7	91.39	9.4	232.18
その他の スパイス	2.69	0.1	0.27	0.1	0.27	0.1	0.27	0.2	0.54
その他のソーブ	2.5	0.9	2.25	0.3	0.75	0.1	0.25	1.4	3.50
牛・筋肉と脂肪	1.2	15.3	18.4	9.7	11.6	20.9	25.1	9.9	11.9
牛・肝臓	0.58	0.1	0.06	0	0.00	1.4	0.81	0	0
牛・腎臓	0.57	0	0.00	0	0.00	0	0.00	0	0.00
鶏・筋肉と脂肪	0.29	18.7	5.42	13.6	3.94	19.8	5.74	13.9	4.03
鶏・肝臓	0.07	0.7	0.05	0.5	0.04	0	0.00	0.8	0.06
鶏・その他食用部分	0.11	1.9	0.21	1.2	0.13	2.9	0.32	1.4	0.15
乳	0.16	264	42.3	332	53.1	365	58.3	216	34.6
鶏卵	0.06	41.3	2.48	32.8	1.97	47.8	2.87	37.7	2.26
合計			559		240		512		670
ЦП			300	/					<u> </u>

- 注)・農産物の残留値は、申請されている使用時期・回数のフルベンジアミドの平均残留値のうち最大のものを用いた(参照別紙3)。
 - ・畜産物の残留値は、フルベンジアミドの最大値を用いた(参照 別紙 6)。
 - ・ff: 平成 17~19 年の食品摂取頻度・摂取量調査 (参照 56) の結果に基づく食品摂取量 (g/人/日)
 - ・摂取量:残留値及び農産物摂取量から求めたフルベンジアミドの推定摂取量(µg/人/日)
 - ・レタスにはリーフレタスの値、だいこんにははつかだいこんの値、西洋ワサビにはわさびだいこんの値、キャベツには芽キャベツの値、その他のあぶらな科野菜にはなばなの値、きょうなにはみずなの値、トマトにはミニトマトの値、その他のなす科野菜にはししとうの値、その他のうり科野菜にはにがうりの値、その他の野菜にはやまのいも(むかご)の値、その他のかんきつにはすだちの値、その他のハーブにはしその値、その他のスパイスには温州みかん(果皮)の値及び鶏・その他食用部分には皮膚の値を用いた。
 - ・とうもろこし、ばれいしょ、かんしょ、やまのいも(塊茎)、てんさい、ごぼう、すいか、メロン、しょうが、ヤングコーン、しょくようほうずき、みょうが及びキウイフルーツは、全データが定量限界未満であったことから、摂取量の計算はしていない。

<参照>

- 1 農薬抄録フルベンジアミド(殺虫剤)(平成 18 年 2 月 28 日改訂):日本農薬株式会社、 2006 年
- 2 ラットにおける単回経口投与代謝試験(GLP対応):日本農薬(株)、2004年、未公表
- 3 ラットにおける反復経口投与代謝試験(GLP対応):日本農薬(株)、2004年、未公表
- 4 ラットにおける胆汁中排泄試験(GLP対応):日本農薬(株)、2004年、未公表
- 5 りんごにおける代謝試験(GLP 対応): PTRL West,Inc. (米国)、2002 年、未公表
- 6 キャベツにおける代謝試験(GLP対応):日本農薬(株)、2002年、未公表
- 7 トマトにおける代謝試験(GLP対応):日本農薬(株)、2002年、未公表
- 8 好気的土壤代謝試験(GLP 対応):日本農薬(株)、2003年、未公表
- 9 土壤表面光分解試験(GLP 対応): PTRL West, Inc. (米国)、2004 年、未公表
- 10 土壤吸着性(GLP 対応):日本農薬(株)、2003年、未公表
- 11 加水分解試験/加水分解運命試験(GLP 対応):日本農薬(株)、2001年、未公表
- 12 水中光分解試験/水中光分解運命試験(GLP 対応):日本農薬(株)、2002年、未公表
- 13 フルベンジアミドの土壌残留試験成績:日本農薬(株)、2004年、未公表
- 14 フルベンジアミドの作物残留試験成績①:日本農薬(株)、2004年、未公表
- 15 フルベンジアミドの作物残留試験成績②:日本農薬(株)、2004年、未公表
- 16 フルベンジアミドの後作物残留試験成績:日本農薬(株)、2004年、未公表
- 17 フルベンジアミドにおける薬理試験 (GLP 対応): (株) 環境バイリス研究所、2002 年、 未公表
- 18 ラットにおける急性経口毒性試験(GLP対応):日本農薬(株)、2003年、未公表
- 19 ラットにおける急性経皮毒性試験(GLP対応):日本農薬(株)、2003年、未公表
- 20 ラットにおける急性吸入毒性試験(GLP対応):日本農薬(株)、2004年、未公表
- 21 代謝物 A-1(NNI-0001-脱ョウ素: B)のラットにおける急性経口毒性試験(GLP 対応): 日本農薬(株)、2004 年、未公表
- 22 代謝物 A-2(NNI-0001-3-ヒドロキシ: C)のラットにおける急性経口毒性試験 (GLP 対応): 日本農薬 (株)、2004 年、未公表
- 23 ウサギを用いた皮膚刺激性試験(GLP対応):日本農薬(株)、2004年、未公表
- 24 ウサギを用いた眼刺激性試験(GLP対応):日本農薬(株)、2004年、未公表
- 25 モルモットを用いた皮膚感作性試験(GLP対応):日本農薬(株)、2004年、未公表
- 26 ラットを用いた飼料混入投与による 90 日間反復経口投与毒性試験(GLP 対応): (財) 残留農薬研究所、2003 年、未公表
- 27 イヌを用いた飼料混入投与による 90 日間反復経口投与毒性試験(GLP 対応): (財) 残留農薬研究所、2003 年、未公表
- 28 ラットを用いた飼料混入投与による1年間反復経口投与毒性試験(GLP対応): (財)残留農薬研究所、2004年、未公表
- 29 イヌを用いた 1 年間反復経口投与毒性試験 (GLP 対応): (財) 残留農薬研究所、2004 年、未公表

- 30 ラットを用いた発がん性試験(GLP対応): (財)残留農薬研究所、2004年、未公表
- 31 マウスを用いた発がん性試験(GLP対応): (財)残留農薬研究所、2004年、未公表
- 32 繁殖毒性(GLP 対応): (財) 残留農薬研究所、2004年、未公表
- 33 繁殖毒性(追加一世代試験) (GLP 対応): (財) 残留農薬研究所、2004 年、未公表
- 34 ラットにおける催奇形性試験 (GLP 対応): (財)残留農薬研究所、2003 年、未公表
- 35 ウサギにおける催奇形性試験(GLP対応): (財)残留農薬研究所、2002年、未公表
- 36 細菌を用いる復帰突然変異試験(GLP対応):日本農薬(株)、2003年、未公表
- 37 ハムスターの CHL 細胞を用いた *in vitro* 染色体異常試験 (GLP 対応): 日本農薬 (株)、 2004 年、未公表
- 38 マウスを用いた小核試験(GLP対応):日本農薬(株)、2003年、未公表
- 39 代謝物 A-1(NNI-0001-脱ョウ素: B)の細菌を用いる復帰突然変異試験(GLP 対応):日本 農薬(株)、2004 年、未公表
- 40 代謝物 A-2(NNI-0001-3-ヒドロキシ: C)の細菌を用いる復帰突然変異試験(GLP 対応): 日本農薬(株)、2004 年、未公表
- 41 食品健康影響評価について (平成 17年3月31日付け厚生労働省発食安第0331001号)
- 42 フルベンジアミドの食品健康影響評価に係る追加提出資料:日本農薬株式会社、2005 年、 未公表
- 43 フルベンジアミドの食品健康影響評価に係る追加提出資料:日本農薬株式会社、2006 年、 未公表
- 44 食品健康影響評価の結果の通知について (平成18年10月26日付け府食第846号)
- 45 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する件(平成19年2月27日付け厚生労働省告示第26号)
- 46 食品健康影響評価について(平成19年11月9日付け厚生労働省発食安第1109009号)
- 47 農薬抄録フルベンジアミド (殺虫剤) (平成 19 年 10 月 10 日改訂): 日本農薬株式会社、 2007 年、一部公表
- 48 フルベンジアミドの作物残留性試験成績:日本農薬(株)、2007年、未公表
- 49 食品健康影響評価の結果の通知について(平成20年1月31日付け府食第109号)
- 50 食品健康影響評価について (平成 21 年 10 月 27 日付け厚生労働省発食安 1027 第 4 号)
- 51 農薬抄録フルベンジアミド(殺虫剤) (平成 21 年 8 月 4 日改訂):日本農薬株式会社、 2009 年、一部公表
- 52 フルベンジアミド作物残留試験成績:日本農薬株式会社、2009年、未公表
- 53 フルベンジアミド海外作物残留試験成績:日本農薬株式会社、2009年、未公表
- 54 フルベンジアミド インポートトレランス設定に関する資料:日本農薬株式会社、2009 年、未公表
- 55 フルベンジアミドの追加毒性試験成績:日本農薬株式会社、2009年、未公表
- 56 平成 17~19 年の食品摂取頻度・摂取量調査 (薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会資料、2014 年 2 月 20 日)
- 57 食品健康影響評価の結果の通知について(平成22年7月22日付け府食第566号)

- 58 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する件(平成23年7月19日付け厚生労働省告示第241号)
- 59 食品健康影響評価について (平成24年1月19日付け厚生労働省発食安0119第5号)
- 60 農薬抄録フルベンジアミド (殺虫剤) (平成 23 年 10 月 17 日改訂): 日本農薬株式会社、 2011 年、一部公表
- 61 水稲の代謝試験(GLP対応):日本農薬株式会社、2004年、未公表
- 62 トウモロコシの代謝試験(GLP 対応): Bayer CropScience、2005 年、未公表
- 63 フルベンジアミド作物残留試験成績:日本農薬株式会社、2010年、未公表
- 64 フルベンジアミド海外作物残留試験成績:Bayer CropScience、未公表
- 65 ラットを用いた急性神経毒性試験(GLP 対応): Bayer CropScience LP、2003 年、未 公表
- 66 V79 細胞を用いた遺伝子突然変異試験(GLP 対応): Bayer HealthCare AG、2003 年、 未公表
- 67 マウスを用いた小核試験(GLP 対応): Bayer HealthCare AG、2005 年、未公表
- 68 マウスの周産期投与による眼発達への影響に関する試験 (GLP 対応): Bayer HealthCare AG、2006 年、未公表
- 69 ラットを用いた免疫毒性試験(GLP 対応): Bayer HealthCare AG、2005 年、未公表
- 70 食品健康影響評価の結果の通知について (平成24年10月15日付け府食第902号)
- 71 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 26 年 3 月 10 日付け厚生労働省告示第 66 号)
- 72 食品健康影響評価について(平成28年7月11日付け厚生労働省発生食0711第5号)
- 73 農薬抄録フルベンジアミド(殺虫剤)(平成 27 年 6 月 25 日改訂):日本農薬株式会社、 2015 年、一部公表
- 74 フルベンジアミド作物残留試験成績:日本農薬株式会社、2017年、未公表
- 75 JMPR①: Pesticide residues in food 2010. Joint FAO/WHO Meeting on Pesticide Residues. Report. (2010)
- 76 JMPR②: Pesticide residues in food 2010. Evaluations. Part I · Residues. (2010)
- 77 JMPR ③: Pesticide residues in food 2010. Evaluations. Part II Toxicological evaluations. (2010)
- 78 EPA: Pesticide Fact Sheet. (2008)
- 79 EFSA: Conclusion on the peer review of the pesticide risk assessment of the active substance flubendiamide. (2013)
- 80 Final Report (Amended I): Absorption, Distribution, Metabolism and Excretion of [phthalic ring (U)-14C]NNI-0001 Following 14 Repetitive Oral Administration to Male and Female Rats. Nihon Nohyaku Co., Ltd、2005、未公表
- 81 Toxicokinetics of NNI-0001: Concentration in selected organs, tissues, and plasma following repetitive daily administration to rats and mice. Nihon Nohyaku Co., Ltd、未公表

- 82 EPA: "Flubendiamide" Human Health Risk Assessment for Uses on Corn, Cotton, Tobacco, Tree fruit, Tree nuts, Vine crops and Vegetable crops. (2008)
- 83 EPA: Federal Register: "Flubendiamide" Vol.76, No.56: 16301~16307 (2011)
- 84 Identification of critical period of flubendiamide-exposure for occurrence of ocular abnormalities in rat pups. Nihon Nohyaku Co., Ltd、2011、未公表
- 85 The effect of flubendiamide on histopathological changes in postnatal ocular development in rats. Nihon Nohyaku Co., Ltd、2011、未公表
- 86 The implication of prolonged blood coagulation for induction of ocular abnormalities in rat pups from dams with postnatal exposure of flubendiamide. Nihon Nohyaku Co., Ltd、2011、未公表