農薬評価書

シアントラニリプロール

(第2版)

2017年7月 食品安全委員会

目 次

	貝
審議の経緯	4
食品安全委員会委員名簿	5
食品安全委員会農薬専門調査会専門委員名簿	5
要 約	8
. 評価対象農薬の概要	9
1. 用途	9
2. 有効成分の一般名	9
3. 化学名	9
4. 分子式	9
5. 分子量	9
6. 構造式	9
7. 開発の経緯	10
. 安全性に係る試験の概要	11
1. 動物体内運命試験	11
(1)ラット	11
(2) ヤギ	17
(3) ニワトリ	20
2. 植物体内運命試験	22
(1)水稲	22
(2) わた	24
(3) トマト	26
(4)レタス	27
3. 土壌中運命試験	29
(1)好気的湛水土壌中運命試験	29
(2) 好気的土壌中運命試験	30
(3)好気的土壌中/嫌気的湛水土壌中運命試験	31
(4)土壌吸着試験	32
4. 水中運命試験	33
(1)加水分解試験	33
(2)水中光分解試験	33
5. 土壌残留試験	34
6. 作物等残留試験	34
(1)作物残留試験(国内)	34
(2)作物残留試験(海外)	35
	食品安全委員会委員名簿. 食品安全委員会農薬専門調査会専門委員名簿. 要 約. 評価対象農薬の概要. 1. 用途. 2. 有効成分の一般名. 3. 化学名. 4. 分子式. 5. 分子量. 6. 構造式. 7. 開発の経緯.

	(3)後作物残留試験	35
	(4)畜産物残留試験	35
	(5)推定摂取量	36
	7. 一般薬理試験	36
	8. 急性毒性試験	37
	(1)急性毒性試験	37
	(2)急性神経毒性試験	38
	9. 眼・皮膚に対する刺激性及び皮膚感作性試験	38
	1 O. 亜急性毒性試験	38
	(1)28 日間亜急性毒性試験(ラット)	38
	(2)90 日間亜急性毒性試験(ラット)	39
	(3) 28 日間亜急性毒性試験(マウス)	40
	(4) 90 日間亜急性毒性試験(マウス)	41
	(5) 90 日間亜急性毒性試験(イヌ)	41
	(6)28 日間亜急性毒性試験(イヌ)<参考資料>	42
	(7)90 日間亜急性神経毒性試験(ラット)	43
	(8) 28 日間亜急性経皮毒性試験(ラット)	43
	(9) 28 日間亜急性毒性試験(代謝物E、ラット)	43
	1 1. 慢性毒性試験及び発がん性試験	44
	(1)1年間慢性毒性試験(イヌ)	44
	(2)2年間慢性毒性/発がん性併合試験(ラット)	45
	(3)18 か月間発がん性試験(マウス)	46
	1 2. 生殖発生毒性試験	47
	(1)2世代繁殖試験(ラット)	47
	(2)発生毒性試験(ラット)	49
	(3)発生毒性試験(ウサギ)	49
	1 3. 遺伝毒性試験	50
	14. その他の試験	51
	(1)ラットにおける甲状腺及び副腎に対する影響	51
	(2) <i>In vitro</i> 甲状腺ペルオキシダーゼ阻害試験	52
	(3)マウスにおける副腎に対する影響	52
	(4) 28 日間免疫毒性試験(ラット)	52
	(5) 28 日間免疫毒性試験(マウス)	53
	(6)代謝物解析(ラット、マウス及びイヌ)	53
Ш	I. 食品健康影響評価	56
	見山玄丘 1 、 742年11月4州 772年2月4州中央手行	ເດ

•	別紙 2:検査値等略称	64
•	別紙3:作物残留試験成績(国内)	65
•	別紙4:作物残留試験成績(海外)	80
•	別紙 5:畜産物残留試験成績(泌乳牛)	91
•	別紙 6:畜産物残留試験成績(産卵鶏)	94
•	別紙 7:推定摂取量	97
	参照	99

<審議の経緯>

一第1版関係一

- 2012 年 9月 25日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及 び基準設定依頼(新規:水稲、キャベツ等)
- 2013年 1月 30日 厚生労働大臣から残留基準設定に係る食品健康影響評価 について要請(厚生労働省発食安 0130 第 2 号)、関係書 類の接受(参照 1~52)
- 2013年 2月 4日 第462回食品安全委員会(要請事項説明)
- 2013年 4月 24日 第23回農薬専門調査会評価第二部会
- 2013年 5月 21日 第24回農薬専門調査会評価第二部会
- 2013 年 5月 22 日 インポートトレランス設定の要請(ばれいしょ、たまねぎ等)
- 2013年 5月 29日 関係書類の接受(参照 56)
- 2013年 6月 14日 第25回農薬専門調査会評価第二部会
- 2013年 6月 27日 第94回農薬専門調査会幹事会
- 2013年 7月 8日 第481回食品安全委員会(報告)
- 2013年 7月 9日 から8月7日まで 国民からの意見・情報の募集
- 2013年 8月 22日 農薬専門調査会座長から食品安全委員会委員長へ報告
- 2013 年 8 月 26 日 第 486 回食品安全委員会 (報告)

(同日付け厚生労働大臣へ通知) (参照 57)

- 2014 年 5 月 16 日 初回農薬登録
- 2014年 10月 3日 残留農薬基準告示 (参照 58)

一第2版関係一

- 2016年 8月 25日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び
- 2016年 12月 13日 基準値設定依頼(適用拡大:非結球あぶらな科葉菜類、にんじん等)
- 2017年 2月 13日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発生食 0213 第1号)
- 2017年 2月 15日 関係書類の接受(参照 59~68)
- 2017年 2月 21日 第639回食品安全委員会(要請事項説明)
- 2017年 4月 10日第63回農薬専門調査会評価第二部会
- 2017 年 5 月 19 日 第 148 回農薬専門調査会幹事会
- 2017年 5月 30日 第651回食品安全委員会(報告)
- 2017年 5月 31日 から6月29日まで 国民からの意見・情報の募集
- 2017年 7月 12日 農薬専門調査会座長から食品安全委員会委員長へ報告

2017年 7月 18日 第 658 回食品安全委員会(報告) (同日付け厚生労働大臣へ通知)

<食品安全委員会委員名簿>

(2015年6月30日まで) (2017年1月6日まで) (2017年1月7日から) 熊谷 進(委員長) 佐藤 洋(委員長) 佐藤 洋(委員長) 佐藤 洋 (委員長代理) 山添 康 (委員長代理) 山添 康(委員長代理) 山添 康(委員長代理) 熊谷 進 吉田緑 三森国敏(委員長代理) 吉田 緑 山本茂貴 石井克枝 石井克枝 石井克枝 上安平洌子 堀口逸子 堀口逸子 村田容常 村田容常 村田容常

<食品安全委員会農薬専門調査会専門委員名簿>

(2014年3月31日まで)

西川秋佳*(座長)

座長**)

長野嘉介(座長代理*;

山手丈至(座長代理**)

• 幹事会

納屋聖人	(座長)	上路雅子	松本清司
西川秋佳*	((座長代理)	永田 清	山手丈至**
三枝順三	(座長代理**)	長野嘉介	吉田 緑
赤池昭紀		本間正充	
• 評価第一部	部会		
上路雅子	(座長)	津田修治	山崎浩史
赤池昭紀	(座長代理)	福井義浩	義澤克彦
相磯成敏		堀本政夫	若栗 忍
• 評価第二部	部会		
吉田 緑	(座長)	桑形麻樹子	藤本成明
松本清司	(座長代理)	腰岡政二	細川正清
泉 啓介		根岸友惠	本間正充
• 評価第三部	部会		
三枝順三	(座長)	小野 敦	永田 清
納屋聖人	(座長代理)	佐々木有	八田稔久
浅野 哲		田村廣人	増村健一
• 評価第四部	部会		

川口博明

代田眞理子

玉井郁巳

根本信雄

森田 健

與語靖洋

井上 薫** *: 2013 年 9 月 30 日まで

**: 2013年10月1日から

(2016年4月1日から)

•	幹事会	
---	-----	--

西川利	と佳	(座長)	三枝順三	長野嘉	育介
納屋聖	呈人	(座長代理)	代田眞理子	林	真
浅野	哲		清家伸康	本間正	三充
小野	敦		中島美紀	與語彙	肾洋

• 評価第一部会

浅野 哲	(座長)	桑形麻樹子	平林容	?子
平塚 明	(座長代理)	佐藤 洋	本多一	- 良ß
堀本政夫	(座長代理)	清家伸康	森田	健
相磯成敏		豊田武士	山本雅	套子
小澤正吾		林 真	若栗	忍

• 評価第二部会

三枝順三	(座長)	高木篤也	八田稔久
小野 敦	(座長代理)	中島美紀	福井義浩
納屋聖人	(座長代理)	中島裕司	本間正充
腰岡政二		中山真義	美谷島克宏
杉原数美		根岸友惠	義澤克彦

• 評価第三部会

西川秋佳(座長)	加藤美紀	髙橋祐次
長野嘉介(座長代	理) 川口博明	塚原伸治
與語靖洋(座長代	(理) 久野壽也	中塚敏夫
石井雄二	篠原厚子	増村健一
太田敏博	代田眞理子	吉田 充

<第23回農薬専門調査会評価第二部会専門参考人名簿> 小澤正吾

<第24回農薬専門調査会評価第二部会専門参考人名簿> 小澤正吾

<第25回農薬専門調査会評価第二部会専門参考人名簿> 小澤正吾

<第94回農薬専門調査会幹事会専門参考人名簿>

小澤正吾 林 真

<第63回農薬専門調査会評価第二部会専門参考人名簿>

永田 清 松本清司

<第 148 回農薬専門調査会幹事会専門参考人名簿>

赤池昭紀 永田 清 松本清司

上路雅子

要 約

アントラニリックジアミド系殺虫剤「シアントラニリプロール」 (CAS No. 736994-63-1) について、各種資料を用いて食品健康影響評価を実施した。なお、今回、作物残留試験(みずな、にんじん等)の成績等が新たに提出された。

評価に用いた試験成績は、動物体内運命(ラット、ヤギ及びニワトリ)、植物体内運命(水稲、トマト等)、作物等残留、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、免疫毒性(ラット及びマウス)、遺伝毒性等の試験成績である。

各種毒性試験結果から、シアントラニリプロール投与による影響は、主に体重(増加抑制)、血液生化学(ALP増加:イヌ)、肝臓(変異肝細胞巣、小葉中心性肝細胞肥大等)、胆嚢(粘膜上皮過形成:イヌ)、動脈(動脈炎:イヌ)及び甲状腺(重量増加及びろ胞上皮細胞肥大)に認められた。神経毒性、発がん性、繁殖能に対する影響、催奇形性、免疫毒性及び遺伝毒性は認められなかった。

各種試験結果から、農産物及び畜産物中の暴露評価対象物質をシアントラニリプロール(親化合物のみ)と設定した。

各試験で得られた無毒性量のうち最小値は、イヌを用いた 1 年間慢性毒性試験の 0.96 mg/kg 体重/日であったことから、食品安全委員会は、これを根拠として安全係数 100 で除した 0.0096 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

また、シアントラニリプロールの単回経口投与等により生ずる可能性のある毒性影響は認められなかったため、急性参照用量(ARfD)は設定する必要がないと判断した。

I. 評価対象農薬の概要

1. 用途

殺虫剤

2. 有効成分の一般名

和名:シアントラニリプロール

英名: cyantraniliprole

3. 化学名

IUPAC

和名:3-ブロモ-1-(3-クロロ-2-ピリジル)-4'-シアノ-2'-メチル-6'-(メチルカルバモイル)ピラゾール-5-カルボキサニリド

英名: 3-bromo-1-(3-chloro-2-pyridyl)- 4'-cyano-2'-methyl-6'-(methylcarbamoyl)pyrazole-5-carboxanilide

CAS (No. 736994-63-1)

和名:3-ブロモ-1-(3-クロロ-2-ピリジニル)-N-[4-シアノ-2-メチル-6- [(メチルアミノ)カルボニル]フェニル]-1H-ピラゾール-5-カルボキサミド

英名:3-bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide

4. 分子式

 $C_{19}H_{14}BrClN_6O_2$

5. 分子量

473.72

6. 構造式

7. 開発の経緯

シアントラニリプロールは、米国デュポン社により開発されたアントラニリックジアミド系の殺虫剤であり、作用機構は昆虫の筋肉細胞内のカルシウムチャンネル(リアノジン受容体)に作用してカルシウムイオンを放出させ、筋収縮を起こすことにより殺虫効果を示すものと考えられている。我が国では 2014 年に初回農薬登録され、海外では米国、カナダ等で登録されている。

今回、農薬取締法に基づく農薬登録申請(適用拡大:非結球あぶらな科葉菜類、 にんじん等)がなされている。

Ⅱ. 安全性に係る試験の概要

各種運命試験 [II.1~4] は、シアントラニリプロールのシアノ基の炭素を 14 C で標識したもの(以下「 $[cya^{-14}C]$ シアントラニリプロール」という。)及びピラ ゾールカルボニルの炭素を 14 C で標識したもの(以下「 $[pyr^{-14}C]$ シアントラニリプロール」という。)を用いて実施された。放射能濃度及び代謝物濃度は、特に断りがない場合は比放射能(質量放射能)からシアントラニリプロールの濃度(mg/kg 又は $\mu g/g$)に換算した値として示した。

代謝物/分解物略称及び検査値等略称は別紙1及び2に示されている。

1. 動物体内運命試験

(1) ラット

SD ラットを用いた動物体内運命試験が実施された。試験構成は表 1 に示されている。

五 · 当 / / / / / / / / / / / / / / / / / /						
試験 群	標識位置	用量	投与回数 投与経路	動物数	検討項目	
A	[cya ⁻¹⁴ C] [pyr ⁻¹⁴ C]	低用量 a) 高用量 b)	単回 経口	雌雄各4匹	血中濃度推移	
В	[cya ⁻¹⁴ C] [pyr ⁻¹⁴ C]	低用量	単回 経口	雌雄各1匹	呼気中排泄	
С	[cya ⁻¹⁴ C] [pyr ⁻¹⁴ C]	低用量 高用量	単回 経口	雌雄各4匹	尿及び糞中排泄、体 内分布、代謝物分析	
D	[cya ⁻¹⁴ C] [pyr ⁻¹⁴ C]	低用量 高用量	単回 経口	雌雄各4匹	T _{max} 時の体内分布	
Е	[cya ⁻¹⁴ C] [pyr ⁻¹⁴ C]	低用量 高用量	単回 経口	雌雄各4匹	T _{max1/2} 時の体内分布	
F	[cya ⁻¹⁴ C] [pyr ⁻¹⁴ C]	低用量 高用量	単回 経口	雌雄各4匹	胆汁中排泄、代謝物 分析	
G	[cya-14C] +[pyr-14C] c)	低用量	反復 d) 経口	雌3匹又は雌雄各3匹	血中濃度、尿及び糞 中排泄、体内分布、 代謝物分析	

表1 動物体内運命試験(ラット)における試験構成

① 吸収

a. 血中濃度推移(単回投与)

試験Aにおいて、血漿中濃度推移が検討された。

薬物動態学的パラメータは表 2 に示されている。

経口投与された[cya-14C]又は[pyr-14C]シアントラニリプロールは速やかに吸

a): 10 mg/kg 体重、b): 150 mg/kg 体重、c): [cya-¹⁴C]+[pyr-¹⁴C]標識体の[1:1]の混合物、d): 投与回数(1 日 1 回、最長 14 日間投与)

収され、投与後 1 から 3 時間以内に C_{max} となり、その後 $[cya^{-14}C]$ シアントラニリプロールの高用量群雌を除く投与群で投与後 5 から 10 時間以内に 1/2 以下の濃度に減少した。

血漿中濃度推移に標識位置の違いによる明らかな差はみられなかった。低用量で雌の $T_{1/2}$ は雄より 2 倍以上長く、低用量及び高用量とも雌の AUC は雄より約 2.5 倍大きく、性差が認められた。(参照 1、2)

投与量 10 mg/kg 体重 150 mg/kg 体重 標識位置 [cya-14C] [pyr-14C] [cya-14C] [pyr-14C] 性別 雄 雄 雌 雄 雌 雌 雄 雌 T_{max} (hr) 1.3 2.0 1.8 2.51.6 1.42.51.0 C_{max} (µg/g) 4.810.4 42.247.442.252.26.311.5 $T_{1/2}$ (hr)a) 42.3 129 117 61.755.3 79.7 53.864.7AUC (<u>hr · μg/g)</u> 609 245638 1,730 5,470 1953,590 1,830

表 2 薬物動態学的パラメータ

b. 血中濃度推移(反復投与)

試験 G において、反復投与後の血漿、赤血球及び全血中濃度推移が検討された。 雌の薬物動態学的パラメータは表 3 に示されている。

血漿、赤血球及び全血中濃度はいずれも 14 日間投与終了 1 日後に C_{max} となった。その後、時間経過に伴って減少し、いずれの試料においても $T_{1/2}$ は 5.7 日以下であった。(参照 1、3)

試料	血漿	赤血球	全血
T _{max} (day)	15	15	15
C _{max} (µg/g)	60.1	10.4	30.9
$T_{1/2}$ (day)	5.6	5.4	5.7
AUC (day · μg/g)	828	161	463

表 3 薬物動態学的パラメータ(雌)

c. 吸収率

胆汁中排泄試験 [1. (1) **②**b.] より得られた投与後 48 時間の胆汁、尿及び体組織中(カーカス ¹及び内容物を除く胃腸管)の放射能を合計し、吸収率が算出された。

吸収率は表 4 に示されている。

a): 半減期 (β相)

¹組織、臓器を取り除いた残渣のことをカーカスという(以下同じ)。

低用量における吸収率は $62.6\% \sim 80.4\%$ 、高用量では $31.4\% \sim 40.0\%$ であった。 標識体による顕著な差は認められなかった。(参照 1、2)

表 4 吸収率 (%TAR)

投与量	10 mg/kg 体重				ng/kg 体重 150 mg/kg 体重			
標識位置	[cya-14C]		[pyr-14C]		[cya-14C]		[pyr-14C]	
性別	雄	雌	雄	雌	雄	雌	雄	雌
吸収率	75.8	62.6	80.4	74.9	40.0	31.4	38.8	32.2

② 分布

a. 体内分布(単回投与)

試験 C、D 及び E において、単回経口投与後の体内分布試験が実施された。 単回経口投与後の主要臓器及び組織における残留放射能濃度は表 5 に示されている。

放射能は体内の広範囲に分布したが、低用量及び高用量とも標識位置による明らかな差はみられなかった。各組織中の残留放射能濃度は T_{max} 以降速やかに減少したが、全体として雄ラットに比べ雌ラットで高い濃度が認められた。(参照 1, 2)

表 5 単回経口投与後の主要臓器及び組織における残留放射能濃度(µg/g)

TO THE INTERPOLATION OF THE PROPERTY OF THE PR									
投与量	標識 位置	性別	$ m T_{max}$	投与 168 時間後					
	[cya	雄 (T _{max} : 2.0 時間)	肝臓(54.3)、胃腸管(28.9)、下垂体(24.9)、肺(22.8)、甲状腺(18.0)、副腎(16.8)、膀胱(15.7)、血漿(10.2)	副腎(0.59)、血漿(0.455)、全血(0.261)、皮膚(0.227)、肝臓(0.211)、肺(0.157)、膀胱(0.148)、腎臓(0.131)					
10	-14C]	雌 (T _{max} : 1.8 時間)	肝臓(54.4)、胃腸管(28.2)、甲状腺(26.8)、下垂体(21.4)、肺(20.0)、副腎(19.2)、脂肪組織(12.3)、心臓(11.0)、血漿(10.8)	副腎(2.08)、下垂体(2.08)、血 漿(1.98)、脂肪組織(1.49)、甲 状腺(1.24)、全血(1.1)、卵巣 (0.917)、肝臟(0.82)、膀胱 (0.69)					
mg/kg 体重	[m.m.	雄 (T _{max} : 2.5 時間)	肝臟(46.8)、胃腸管(21.9)、下垂体(16.7)、副腎(12.7)、膀胱(11.5)、甲状腺(10.2)、腎臓(8.14)、肺(6.89)、脂肪組織(6.54)、膵臓(6.04)、血漿(6.02)	副腎(1.14)、血漿(1.04)、全血(0.502)、肝臟(0.351)、甲状腺(0.323)、肺(0.296)、皮膚(0.249)、膀胱(0.245)、腎臓(0.225)、心臟(0.202)					
	[pyr -14C]	雌 (T _{max} : 1.6 時間)	肝臟(60.6)、胃腸管(25.1)、下垂体(20.4)、副腎(18.6)、甲状腺(11.9)、肺(11.8)、心臟(11.5)、脂肪組織(11.4)、血漿(10.3)	血漿(2.63)、副腎(2.35)、脂肪 組織(1.93)、下垂体(1.66)、全 血(1.32)、甲状腺(1.22)、卵巣 (0.932)、肝臟(0.926)、肺 (0.865)、膀胱(0.859)					

投与量	標識 位置	性別	$ m T_{max}$	投与 168 時間後
	[cya	雄 (T _{max} : 1.4 時間)	胃腸管(1,200)、下垂体(204)、肺(194)、肝臓(154)、膀胱(102)、甲状腺(87.2)、副腎(49.7)、腎臓(41.0)、脂肪組織(40.2)、血漿(39.5)	血漿(4.31)、副腎(3.58)、全血(2.39)、皮膚(2.20)、肝臓(1.69)、肺(1.30)、膀胱(1.19)、心臓(0.978)、腎臓(0.885)
150 mg/kg	-14C]	雌 (T _{max} : 2.5 時間)	胃腸管(409)、下垂体(309)、肝臓(171)、甲状腺(136)、副腎(127)、肺(109)、脂肪組織(76.2)、膀胱(75.0)、卵巣(59.3)、膵臓(56.3)、心臓(54.4)、血漿(51.2)	血漿(19.3)、赤血球(13.0)、甲状腺(10.9)、全血(10.7)、下垂体(10.1)、副腎(9.77)、卵巣(7.16)、膀胱(5.53)、肝臓(5.50)、肺(5.28)
体重	[pyr - 14C]	雄 (T _{max} : 1.0 時間)	胃腸管(1,370)、肺(269)、肝臟(173)、下垂体(168)、副腎(154)、甲状腺(121)、膀胱(57.4)、腎臟(48.5)、血漿(44.5)	副腎(3.60)、血漿(3.18)、全血(1.64)、肝臟(1.33)、肺(0.924)、赤血球(0.821)、心臟(0.696)、腎臟(0.674)、皮膚(0.606)
		雌 (T _{max} : 1.3 時間)	胃腸管(890)、下垂体(271)、肝臓(186)、甲状腺(161)、副腎(151)、肺(130)、卵巣(114)、脂肪組織(66.4)、心臓(56.9)、血漿(52.4)	血漿(27.1)、全血(14.6)、副腎(14.2)、甲状腺(13.4)、下垂体(9.69)、膀胱(9.11)、肺(7.73)、肝臓(7.58)、卵巣(7.55)、脂肪組織(7.25)

b. 体内分布(反復投与)

試験 G において、反復経口投与後の体内分布試験が実施された。 反復投与後の主要臓器及び組織における残留放射能濃度は表 6 に示されてい

及復投与後の主要臓器及び組織における残留放射能濃度は表 6 に示されている。

組織中の残留放射能濃度は投与終了後7日間で速やかに低下した。主な組織における半減期は5日未満であり、組織への残留は認められなかった。(参照1、3)

表 6 反復経口投与後の主要臓器及び組織における残留放射能濃度(µg/g)

投与量	性別	最終投与1日後	最終投与7日後
10	雄	血漿(14.7)、甲状腺(12.5)、下垂体(9.34)、副腎(7.92)、全血(7.74)、肝臓(6.35)、膀胱(5.20)、肺(4.44)、皮膚(4.36)	血漿(6.12)、副腎(3.43)、全血(3.41)、 甲状腺(2.71)、肺(2.31)、皮膚(1.90)、 膀胱(1.84)、肝臟(1.83)、赤血球 (1.52)、腎臟(1.36)
mg/kg 体重/日	雌	血漿(60.1)、脂肪組織(45.0)、全血(30.9)、肝臟(30.7)、下垂体(29.1)、副腎(28.8)、膀胱(21.4)、甲状腺(21.2)、卵巣(19.9)	血漿(19.4)、下垂体(12.3)、全血(11.0)、甲状腺(10.4)、副腎(9.10)、 肝臓(6.50)、肺(6.29)、卵巣(5.26)、 子宮(5.16)、膀胱(5.15)

注)[cya-¹⁴C]+[pyr-¹⁴C]標識体の[1:1]の混合物を低用量(10 mg/kg 体重/日)で反復投与

③ 代謝

尿及び糞中排泄試験[1.(1)④a.]及び胆汁中排泄試験[1.(1)④b.]で得られた 尿、糞及び胆汁を試料として、代謝物同定・定量試験が実施された。

尿、糞及び胆汁中代謝物は表7に示されている。

各試料中の代謝物組成に標識位置による大きな差はみられなかった。低用量及び高用量投与群とも尿及び糞中において、主要代謝物として Q 及び K が認められた。 糞中では K が更に代謝された A も認められた。未変化のシアントラニリプロールは尿及び糞中に認められたが、胆汁中には検出されなかった。高用量投与群では糞中のシアントラニリプロールは 50% TAR 以上を占めた。胆汁中には、多種のグルクロン酸抱合体が検出されたが、いずれも 5% TAR 未満であった。

シアントラニリプロールの主要代謝経路の一つは、水酸化による主代謝物 Q 及び K の生成であり、Q は更にグルクロン酸抱合体 grQ に代謝された。一方、代謝物 K が閉環した J を経てグルクロン酸抱合体 grJ に代謝される経路、代謝物 D 又は A に至る経路が考えられた。別の代謝経路としては、シアントラニリプロールの閉環による代謝物 D の生成、更にヒドロキシル化による代謝物 D の生成を経てグルクロニド体 D に至る経路、また、ピラゾール環とフェニル環の間のアミド結合開裂による代謝物 D の生成の経路も考えられた。(参照 D 、2、3)

表 7 尿、糞及び胆汁中の代謝物 (%TAR)

投与 回数	標識位置	投与量 (mg/kg 体重)	性別	試料	シアント ラニリプ ロール	代謝物
			雄	尿	0.33	K(4.52), Q(4.43), A(1.40)
				糞	5.06	K(10.5), A(8.12), Q(4.91), L(2.41), D(2.14), J(1.19), B(0.30)
		10		胆汁	ND	grL(4.78)、grQ(4.00)、grJ(2.15)
		10		尿	5.42	K(11.5), D(0.54), Q(0.35), J(0.16)
			雌	糞	16.8	K(14.4), D(4.10), J(3.36), L(3.03), B(2.79), Q(2.40), A(2.04), grQ(0.11)
				胆汁	ND	grL(4.83)、grQ(2.93)、grJ(0.47)
単回 投与	[cya-14C]	C]	雄	尿	1.37	Q(4.53), K(4.34), A(0.45), L(0.42), D(0.13), J(0.09)
				糞	55.8	K(5.46), A(2.45), Q(1.96), D(1.14), L(0.88), J(0.69), B(0.48)
		150		胆汁	ND	grL(3.58)、grJ(1.57)、grQ(1.27)
		150	雌	尿	1.83	K(4.88), D(0.67), Q(0.65), J(0.46), A(0.31), L(0.25), B(0.20)
				糞	55.0	K(6.73), D(3.05), J(2.17), A(1.04), B(0.92), Q(0.61), L(0.36)
				胆汁	ND	grL(2.18), grQ(1.67), grJ(0.69)

	I			1		
				尿	1.09	Q(13.6), K(4.07), A(3.04), M(2.10), L(0.60),
						J(0.27), D(0.23), B(0.04)
			雄	糞	5.38	K(9.25), A(5.59), M(5.30), Q(3.58), L(2.57),
			ДЦ	共	0.00	D(1.46), J(0.76), B(0.19)
				胆汁	ND	L(3.41), grQ(2.78), grL(2.62), grJ(0.97),
		10		N=1	ND	B(0.47)
		10		尿	3.58	K(8.55), $Q(1.74)$, $M(0.91)$, $D(0.67)$, $A(0.50)$,
					5.56	J(0.32), B(0.24), L(0.00)
			雌	糞	15.0	K(17.2), D(5.52), L(2.94), J(2.93), B(2.83),
			此臣	異	15.0	M(2.56), Q(1.96), A(1.93)
				用口 沙儿	ND	grL(3.73), grQ(3.60), grJ(2.22), J(1.55),
	[140]			胆汁	ND	L(0.66), B(0.61)
	[pyr-14C]	150	雄	1	0.77	Q(3.97), K(2.10), A(1.08), M(0.43), L(0.36),
				尿	0.77	D(0.18), J(0.14), B(0.02)
				糞	65.6	K(3.59), A(1.64), D(1.28), J(0.73), M(0.66),
						L(0.45), Q(0.17), B(0.08)
				胆汁 ND	grL(2.25), grJ(1.15), grQ(1.07), J(0.97),	
					ND	L(0.17), B(0.06)
			雌	1	1 95	K(3.95), J(1.28), Q(1.21), M(0.49), A(0.47),
				尿	1.35	B(0.39), D(0.24), L(0.07)
				糞	59.4	K(6.37), D(2.26), J(2.18), L(1.08),
				美	59.4	grQ(0.73), A(0.50), Q(0.31)
				胆汁	ND	grL(2.08), grQ(1.93), L(1.21), grJ(0.79),
				7旦7丁	ND	J(0.70), B(0.07)
				尿	ND	L(7.95), M(6.36), K(3.29), J(1.91),
			雄	DK	ND	grL(1.48)、B(0.74)
				糞	0.04	K(10.7), A(4.55), Q(4.04), L(3.13), M(2.27),
反復 [cya-14C]	1.0		異	9.84	J(1.57), D(1.10), B(0.39)	
投与 a)		1 111		尼	NID	J(14.3), M(1.52), L(1.30), K(1.19), B(0.76),
			ılləff:	尿	ND	grL(0.54)
			雌	糞	10 5	K(16.4), J(5.12), Q(3.65), L(3.41), D(2.14),
				異	13.5	B(1.80)
			•			

a): 反復投与終了時(第14日)に採取した試料の分析値を示す。

ND:検出されず

4 排泄

a. 尿及び糞中排泄

試験 B において、投与後 48 時間の $^{14}CO_2$ の呼気中排泄はないことが確認されたので、試験 C 及び G において、単回投与後 168 時間及び反復投与終了から 7 日後までに尿及び糞中に排泄された放射能並びに体内残存放射能が測定された。投与後 168 時間の尿及び糞中排泄率は表 8 に示されている。

単回投与では投与後 168 時間で 81.4%TAR~92.4%TAR が尿及び糞中に排泄され、それらの大部分は投与後 48 時間で排泄された。いずれの標識体においても排泄パターンはほぼ同様であったが、尿中排泄は低用量で高用量に比べ高く、糞中排泄は高用量で低用量を上回った。顕著な性差は認められなかった。

反復投与においても単回投与と同様の排泄傾向が認められた。82.2%TAR~89.6%TAR が尿及び糞中に排泄され、糞中への排泄が多く、体内残存放射能は僅かであった。(参照 1、2、3)

表 8 投与後 168 時間の尿及び糞中排泄率 (%TAR)

	投与回数				反復投与						
	投与量		10 mg/kg 体重 150 mg/kg 体重						10 mg/kg 体重/日		
	標識位置	[cya	-14 C]	[pyr	-14 C]	[cya	[cya-14C] [pyr-14C]		[cya ⁻¹⁴ C]+ [pyr ⁻¹⁴ C]		
	性別	雄	雌	雄	雌	雄	雌	雄	雌	雄	雌
	尿	27.7	22.0	34.6	23.7	14.8	13.2	11.8	12.9	28.8	20.3
= 1	糞	61.5	61.6	46.8	60.6	77.6	78.6	80.1	77.6	60.8	61.9
試料	体内残存 a)	1.14	4.25	1.67	5.35	0.68	2.45	0.25	2.30	0.8	2.5
['	ケージ、洗浄液	5.62	5.35	5.23	3.40	1.66	1.12	2.27	1.08	2.8	4.5
	合計 b)	96.5	92.6	88.3	93.0	95.0	95.1	94.5	93.7	93.2	89.1

a): 各組織及びカーカスの合計。赤血球及び血漿の放射能を除く。

b. 胆汁中排泄

試験 F において、胆管カニューレを挿入した動物における単回投与後 48 時間の胆汁、尿及び糞中排泄並びに体内残存放射能が測定された。

胆汁、尿及び糞中排泄率は表9に示されている。

胆汁中には 10.0%TAR~36.5%TAR の排泄が認められた。 (参照 1、2)

投与量 150 mg/kg 体重 10 mg/kg 体重 [cya-14C] [cva-14C] [pyr-14C] [pyr-14C] 標識位置 性別 雄 雌 雄 雌 雄 雌 雄 雌 27.736.527.2 16.0 11.6 胆汁 15.710.0 11.3 35.5 尿 42.3 33.0 38.9 20.716.1 22.514.1 21.620.0 59.6 17.513.554.939.3 38.3 カーカス 5.66 13.1 4.8111.52.945.103.554.68 試 料 胃腸管 0.200.750.150.690.230.251.222.01 胃腸管内容物 1.790.6914.40.573.99 1.951.6726.6ケージ洗浄液 2.203.16 3.00 1.83 2.62 5.673.31 1.50 合計 97.0 89.0 96.4 102 99.0 98.4 95.8 98.6

表 9 胆汁、尿及び糞中排泄率(%TAR)

(2) ヤギ

泌乳ヤギ(ブリティッシュザーネン種、一群雌 1 頭)に、 $[pyr^{-14}C]$ シアントラニリプロールを 21.0 mg/日/頭又は $[cya^{-14}C]$ シアントラニリプロールを 22.0 mg/

b): 合計の値は各個体における総回収率の平均。

日/頭(いずれも飼料中濃度 10 mg/kg に相当)で7日間反復カプセル経口投与して動物体内運命試験が実施された。

① 分布

尿及び糞試料は投与開始前及び投与開始からと殺時まで 24 時間間隔で採取し、 乳汁は1日2回搾乳した。最終投与から約23時間経過後にと殺して、胆汁、肝 臓、腎臓、筋肉及び脂肪組織が採取された。

7日間反復経口投与後の各試料中の放射能分布は表 10 に示されている。

[pyr-14C]標識体及び[cya-14C]標識体投与動物において、それぞれ 95.6%TAR 及び 96.8%TAR が尿、糞、乳汁並びに臓器及び組織から回収された。いずれの動物においても、投与放射能の大部分が糞中に排泄された。肝臓、胆汁及び腎臓中の残留放射能は僅かであり、[pyr-14C]標識体及び[cya-14C]標識体投与でそれぞれ 0.33%TAR 及び 0.26%TAR であった。乳汁中の放射能は、7 日間の合計値が [pyr-14C]標識体投与で 1.81%TAR、[cya-14C]標識体投与で 1.04%TAR であり、反復投与による蓄積性はみられなかった。(参照 1、4)

[pvr-14C] [cva-14C] 標識位置 %TAR %TAR μg/g μg/g 糞 84.3 87.5 尿 6.93 6.66 ケージ洗浄液 2.26 1.39 胆汁 0.022.42< 0.01 1.57 乳汁 1.81 0.1471.04 0.080 肝臓 0.30 0.4950.250.460腎臓 0.01 0.1770.01 0.117 筋肉 0.0430.020大網脂肪 0.111 0.046 腎臟周囲脂肪 0.1110.046皮下脂肪 0.114 0.045合計 96.8 95.6

表 10 7日間反復経口投与後の各試料中の放射能分布

-:報告なし

② 代謝

分布試験 [1.(2)①] で得られた糞、尿、胆汁、乳汁、肝臓、腎臓、筋肉及び脂肪組織を試料として、代謝物同定・定量試験が実施された。

各試料中の代謝物は表 11 に示されている。

糞中では、いずれの標識体投与においても未変化のシアントラニリプロールが 約80%TRR を占め、代謝物としてQ、G及びK等が検出されたがいずれも5%TRR

以下であった。尿中では、 $[pyr^{-14}C]$ 標識体で代謝物 K、J 及び Q、 $[cya^{-14}C]$ 標識体で代謝物 K、J 及び C が 10%TRR を超えて認められた。胆汁中代謝物はいずれも 10%TRR 未満であったが、 $[pyr^{-14}C]$ 標識体で D、H、Q、K、F 及び J が、 $[cya^{-14}C]$ 標識体で H 及び D が 5%TRR 以上認められた。乳汁中では、いずれの標識体も未変化のシアントラニリプロールが最も多く($39.5\%TRR \sim 49.6\%TRR$)、 $[pyr^{-14}C]$ 標識体で K が、 $[cya^{-14}C]$ 標識体で K 及び Q が 10%TRR を超える代謝物として認められた。

各臓器及び組織中では、いずれの標識体においても未変化のシアントラニリプロールが高い割合で認められた。肝臓では $9\sim10$ 種の代謝物が認められたが、いずれも 6%TRR 未満であった。脂肪組織ではいずれの標識体においても Bが、筋肉では[pyr-14C]標識体で K が 10%TRR 以上認められた。

ヤギ体内におけるシアントラニリプロールの主要代謝経路として、ラットで認められた経路に加え、代謝物 C の生成とそれに続くメチルアミド基の脱メチル化による I の生成及び他の位置での脱アミノ化による E の生成、また、代謝物 B のシアノ基が代謝され F から G に至る経路が考えられた。(参照 1、4)

表 11 各試料中の代謝物 (%TRR)

標識位置		試料	シアント ラニリプ	代謝物
			ロール	
		},	70.0	Q(3.09), K(2.44), J(1.73), L(1.57), B(1.12), F(0.91),
		糞	79.0	C(0.63), D(0.62), G(0.54), I(0.49), E(0.38)
			T 01	K(23.5), J(17.0), Q(12.1), C(5.84), I(3.33), B(3.06),
		尿	7.21	D(1.79)
		HE M	4.50	D(9.03), H(8.38), Q(7.93), K(6.97), F(6.79),
		胆汁	4.73	J(5.29)、I(3.79)、C(3.76)
		51 VI	10.0	K(18.3), B(3.72), Q(2.01), C(1.32), G(1.26),
	乳汁		49.6	D(0.69), I(0.57)
	肝臓	% \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	27.3	F(5.71), J(5.26), K(3.55), G(3.40), D(1.01), I(0.95),
[pyr-14C]		溶媒抽出		B(0.90), H(0.61), C(0.42), Q(0.32)
		加水分解	ND	I(0.50), J(0.40), G(0.30)
		臣文印本	10.0	K(7.05), I(2.32), J(1.80), Q(1.68), D(1.07), F(0.70),
		腎臓	18.9	C(0.64)
		筋肉	15.3	K(32.8), F(4.44), B(1.13)
		工 - 公园	57.0	H(2.87) \ L(1.92) \ G(0.80) \ Q(0.54) \ F(0.54) \
	마느마+	大網	57.9	K(0.50), B(0.46)
	脂肪	腎臓周囲	36.2	B(55.6), J(1.88), H(0.81), G(0.60), K(0.16), I(0.02)
	組織	₩ ₩	40.7	B(17.5) , J(2.82) , H(2.46) , G(0.93) , K(0.56) ,
		皮下	42.7	M(0.37), L(0.37)
[cya-14C]		糞	81.6	G(3.06) Q(2.85) K(2.19) F(1.56) J(1.03)

				D(0.00) (2(0.00)			
				B(0.90), C(0.80)			
		尿	2.66	K(18.7), J(18.4), C(12.0), I(6.91), E(3.96), L(3.54),			
		<i>"</i> 1<	2.00	H(3.44)			
		胆汁	2.52	H(7.99) \ D(5.64) \ J(3.21) \ K(3.20) \ Q(2.55) \			
		/4 → 1 1	2.02	F(2.25), I(2.01), C(1.76)			
		乳汁	39.5	K(15.1), Q(11.8), C(7.18), I(2.63), D(1.13), B(0.48)			
		 溶媒抽出	17.1	F(5.41), J(3.72), K(2.48), D(1.10), I(1.03), C(0.83),			
	肝臓	俗殊抽山	17.1	G(0.83), Q(0.64), H(0.61)			
	月月加戦	 加水分解	ND	Q(1.78), I(0.86), C(0.37), G(0.22), J(0.18), D(0.12),			
		加小分門件		K(0.11)			
		腎臓	12.7	K(7.07), J(4.08), I(3.02), B(1.05), D(0.61)			
		筋肉	30.3	I(4.63)			
		大網	22.6	B(24.1), L(2.96), G(1.85), K(0.53)			
	脂肪 腎臓周囲		33.6	B(36.7), Q(1.60), J(1.32)			
	組織	皮下	41.0	B(22.2), J(6.67), G(2.33), I(0.88), K(0.88), L(0.69),			
MD IAIL S		及下	41.8	H(0.63)			

ND: 検出されず

(3) ニワトリ

産卵鶏(イサワーレン、投与群:一群雌 5 羽、対照群: 雌 2 羽)に、 $[pyr^{-14}C]$ シアントラニリプロールを $1.52\sim1.99$ mg/日/羽又は $[cya^{-14}C]$ シアントラニリプロールを $1.70\sim1.86$ mg/日/羽(それぞれ 10 mg/kg 飼料相当)で 14 日間反復カプセル経口投与して動物体内運命試験が実施された。

① 分布

14日間反復経口投与後の各試料中の放射能分布は表 12に示されている。

いずれの標識体も投与期間が終了した時点で投与放射能のほとんどが総排泄物中に回収された(97.0%TAR~99.7%TAR)。1日の排泄量は約7%TARであり、14日間ほとんど変動はみられなかった。卵及び臓器・組織中の残留放射能は合計1%TAR未満であった。

卵白中の残留放射能は 14 日間の合計で 0.40% TAR \sim 0.54% TAR 認められたが、卵黄中では僅かであり、いずれの標識体も 0.07% TAR であった。肝臓中の残留放射能濃度は $0.141\sim0.205$ μ g/g であり、他の組織はいずれも 0.01 μ g/g 未満であった。(参照 1、5)

表 12 14 日間反復経口投与後の各試料中の放射能分布

· · · · · · · · · · · · · · · · · · ·	[pyr	-14C]	[cya- ¹⁴ C]		
標識位置	%TAR	μg/g	%TAR	μg/g	
総排泄物	99.7	-	97.0	-	
卵白	0.40	-	0.54	-	
卵黄	0.07	-	0.07	-	
肝臓	0.04	0.205	0.026	0.141	
筋肉	-	0.005	-	0.003	
腹腔内脂肪	-	0.005	-	0.004	
脂肪組織付き皮	-	0.007	-	0.005	
ケージ洗浄液	2.52	-	3.83	-	
合計	103	-	101	-	

注)総排泄物試料及び卵は 15 日後(と殺日)まで毎日採取した。可食部(肝臓、筋肉、腹腔内脂肪、脂肪組織付きの皮及び卵管内の卵)は、15 日の最終投与から約 23 時間経過後にと殺した動物より採取した。

② 代謝

分布試験 [1.(3)①] で得られた総排泄物、卵白、卵黄及び肝臓を試料として、 代謝物同定・定量試験が実施された。

各試料中の代謝物は表13に示されている。

総排泄物中の主な放射性成分はいずれの標識体も未変化のシアントラニリプロールであり、次いで代謝物 K が 8%TRR 以上の割合で認められた。卵白においても未変化体の割合が最も高く、次いで代謝物 B 及び J がそれぞれ 17.1%TRR ~29.2%TRR 及び 18.2%TRR~18.7%TRR 認められた。卵黄ではいずれの標識体も未変化体の割合は比較的低く、主な代謝物として B 及び J が 7.42%TRR~16.8%TRR、更に $[cya^{-14}C]$ 標識体で D が 12.0 %TRR 認められた。肝臓中では、未変化体は検出されず、B を始め数種の僅かな代謝物が検出されたのみであった。標識体間の代謝物組成に顕著な相違は認められなかった。

ニワトリで検出された代謝物の種類はヤギと同じであり、主要代謝経路はほぼ同様であると考えられた。 (参照 1、5)

^{-:}報告なし

表 13 各試料中の代謝物 (%TRR)

			シアント	
標識位置		試料	ラニリプ	代謝物
			ロール	
	松公	排泄物	68.0	K(8.96), D(3.34), Q(2.53), I(1.17), J(1.12), F(0.94),
	仑	19年(臣19)	00.0	B(0.64)
[140]		卵白	41.9	J(18.2), B(17.1), H(3.90), L(2.86), D(0.74)
[pyr-14C]		卵黄	9.33	J(16.8), B(13.1), F(6.19), E(1.90), H(1.52), L(1.24)
	肝臓	溶媒抽出	ND	H(0.27), G(0.23), K(0.027)
		加水分解	ND	Q(0.55), I(0.46), H(0.45), C(0.23)
	総	排泄物	76.6	K(8.94), D(1.20)
		卵白	32.5	B(29.2), J(18.7), K(6.40), L(0.96), D(0.61)
[cya-14C]		卵黄	10.3	D(12.0), J(11.6), B(7.42), K(5.42), L(0.86)
	肝臓	溶媒抽出	ND	B(2.08), J(0.89), K(0.42)
		加水分解	ND	K(1.10), L(0.39)

ND:検出されず

2. 植物体内運命試験

(1) 水稲

温室内で栽培した $3\sim4$ 葉期の水稲(品種: Gleva)に、 $[cya^{-14}C]$ シアントラニリプロール及び $[pyr^{-14}C]$ シアントラニリプロールの等量混合液を 150 g ai/ha の用量となるように 7 日間隔で計 3 回茎葉散布並びに粒剤に調製した $[cya^{-14}C]$ シアントラニリプロール又は $[pyr^{-14}C]$ シアントラニリプロールをそれぞれ 300 g ai/ha の用量で土壌処理し、茎葉散布又は土壌処理後経時的に茎葉、わら、玄米及び根部を採取して、植物体内運命試験が実施された。

稲わら中の総残留放射能は、茎葉散布最終処理 140 日後で 0.446 mg/kg、土壌処理 175 日後で $0.278\sim0.297$ mg/kg であった。同時期の根部には、茎葉散布で 0.447 mg/kg、土壌処理で $0.282\sim0.367$ mg/kg、また玄米中には、茎葉散布で 0.024 mg/kg、土壌処理で $0.012\sim0.029$ mg/kg の放射能が認められ、可食部への 残留は僅かであった。

茎葉散布処理水稲における代謝物は表 14 に、土壌処理水稲における代謝物は表 15 に示されている。

茎葉散布後の未成熟茎葉中の残留放射能の主要成分は未変化のシアントラニリプロールであり、処理 14 日後に 81.1%TRR (0.980 mg/kg) を示した。主な代謝物として B が最大で 10.9%TRR 認められた。ほかに、C、E、F、G、J 及び Q が検出されたが、いずれも 1.9%TRR 以下であった。稲わら及び玄米中においても主要成分は未変化のシアントラニリプロールであり、それぞれ 24.4%TRR (0.109 mg/kg) 及び 20.9%TRR (0.005 mg/kg) 認められた。稲わら中では、代謝物 B、C、E、F、I 及び M が認められたが、10%TRR を超えて検出された

代謝物は認められなかった。玄米中では代謝物 B、G 及び Q が検出されたが、いずれも 2.6% TRR (0.001 mg/kg) 以下であった。

土壌処理後の茎葉中における残留放射能の主要成分は未変化のシアントラニリプロールであり、処理 56 日後に最大値 48.7%TRR~57.4%TRR $(0.205\sim0.232\,$ mg/kg) を示した。主な代謝物として B が最大で 16.2%TRR~22.1%TRR $(0.066\sim0.093\,$ mg/kg) 認められ、そのほか、C、F、J、M 及び Q が微量 (2.3%TRR 以下)検出された。稲わら及び玄米中においても主要成分は未変化のシアントラニリプロールであり、それぞれ 42.1%TRR~44.9%TRR $(0.125\,$ mg/kg) 及び 46.2%TRR~62.7%TRR $(0.007\sim0.014\,$ mg/kg) 認められた。稲わら中では、主な代謝物として B が 10%TRR を超えて認められたが、ほかに検出された 6 種の代謝物はいずれも 5%TRR 未満であった。玄米中では、代謝物 B が 5.9%TRR~10.2%TRR 認められたが、残留量は $0.002\,$ mg/kg 以下と僅かであった。(参照 1、6)

表 14 茎葉散布処理水稲における代謝物

							T				
採取時期	2回目処理		最終	最終処理		最終処理		最終処理 140 日後			
1木以时别	7日後		7日後		14 日後		(成熟試料)				
±4×1			茎	葉			わ	ら	玄米		
試料	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	
シアント											
ラニリプ	95.5	0.956	75.6	1.18	81.1	0.980	24.4	0.109	20.9	0.005	
ロール											
代謝物 B	6.3	0.063	7.2	0.112	10.9	0.131	4.0	0.018	1.5	< 0.001	
代謝物 E	ND	ND	ND	ND	0.2	0.002	9.0	0.04	ND	ND	
代謝物 C	ND	ND	0.6	0.009	0.8	0.009	9.4	0.042	ND	ND	
代謝物 I	ND	ND	ND	ND	ND	ND	2.4	0.011	ND	ND	
代謝物 M	ND	ND	ND	ND	ND	ND	3.2	0.014	ND	ND	
代謝物 Q	ND	ND	1.7	0.027	ND	ND	ND	ND	2.2	0.001	
代謝物 F	ND	ND	ND	ND	0.8	0.01	5.3	0.024	ND	ND	
代謝物 G	ND	ND	ND	ND	0.2	0.005	ND	ND	2.6	0.001	
代謝物J	0.6	0.006	1.5	0.024	1.9	0.023	ND	ND	ND	ND	
抽出残渣	1.0	0.010	3.4	0.053	4.7	0.057	16.3	0.073	51.3	0.012	

ND: 検出されず

表 15 土壌処理水稲における代謝物

	松叶叶钿				処理征	发 日数				
標識	採取時期	7	日	56	Ħ		178	5 目		
位置			茎	葉		わ		玄米		
	試料	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	
	シアント									
	ラニリプ	102	0.077	57.4	0.232	44.9	0.125	62.7	0.007	
	ロール									
	代謝物 B	ND	ND	16.2	0.066	18.4	0.051	10.2	0.001	
[cya-14C]	代謝物 C	ND	ND	1.5	0.006	3.6	0.010	ND	ND	
[cya-14C]	代謝物 Q	ND	ND	1.7	0.007	ND	ND	ND	ND	
	代謝物 F	ND	ND	ND	ND	3.0	0.008	ND	ND	
	代謝物 G	ND	ND	ND	ND	0.3	0.001	ND	ND	
	代謝物 J	ND	ND	ND	ND	1.4	0.004	ND	ND	
	抽出残渣	3.9	0.003	13.2	0.053	20.3	0.056	38.9	0.005	
	シアント									
	ラニリプ	86.2	0.056	48.7	0.205	42.1	0.125	46.2	0.014	
	ロール									
	代謝物 B	12.3	0.008	22.1	0.093	14.3	0.042	5.9	0.002	
[pyr-14C]	代謝物 C	ND	ND	2.3	0.010	2.8	0.008	ND	ND	
[[pyr-140]	代謝物 M	ND	ND	0.7	0.003	2.8	0.008	1.1	< 0.001	
	代謝物 F	ND	ND	0.8	0.003	3.7	0.011	ND	ND	
	代謝物 G	ND	ND	ND	ND	0.6	0.002	ND	ND	
	代謝物 J	ND	ND	0.8	0.003	1.2	0.004	ND	ND	
ND・松山ヤ	抽出残渣	5.3	0.004	14.5	0.061	21.5	0.064	32.9	0.010	

ND:検出されず

(2) わた

ポットで栽培した $6\sim9$ 葉期以上のわた(品種:Crema 111)に、 $[cya^{-14}C]$ シアントラニリプロール及び $[pyr^{-14}C]$ シアントラニリプロールの等量混合液を $138\sim152$ g ai/ha の用量で茎葉散布又は水和剤に調製した $[cya^{-14}C]$ シアントラニリプロール若しくは $[pyr^{-14}C]$ シアントラニリプロールを $144\sim164$ g ai/ha の用量で土壌処理した。茎葉散布及び土壌処理とも 7 日間隔で計 3 回処理し、経時的に茎葉並びに成熟期の綿実、繰綿及び綿繰り機の綿屑を採取して、植物体内運命試験が実施された。

茎葉散布において、最終処理直後の茎葉における総残留放射能は 7.93 mg/kg であり、最終処理後 13 日に 0.425 mg/kg まで減少した。茎葉散布後の綿繰り機の綿屑、繰綿及び綿実における総残留放射能は、それぞれ 0.131、0.009 及び定量限界未満 (0.001 mg/kg 未満) であった。土壌処理後の茎葉、繰綿及び綿実の総残留放射能は 0.005 mg/kg 以下であり、綿繰り機の綿屑の値は 0.023~0.095

mg/kg であった。

茎葉散布処理綿における代謝物は表 16 に、土壌処理における綿繰り機の綿屑中代謝物は表 17 に示されている。

茎葉散布処理後の綿繰り機の綿屑における残留放射能の主要成分は未変化のシアントラニリプロールであり(34.4%TRR)、そのほか代謝物 B、C 及び Q が検出されたが、いずれも 10%TRR 未満であった。茎葉においても主要成分は未変化のシアントラニリプロールであり、1 回目処理後に 69.7%TRR 認められたが、7 日後(2 回目処理前)には 19.7%TRR に減少し、それに伴って 11 種の代謝物の生成が認められた。このうち、O 及び S が 10%TRR を超えて認められたが、最終処理 13 日後では 5%TRR 未満であった。

土壌処理において、0.01 mg/kg 以上の放射能を含む部位は綿繰り機の綿屑のみであり、綿屑中代謝物分析の結果、主要成分は未変化のシアントラニリプロールであった($25.6\%\text{TRR}\sim46.8\%\text{TRR}$)。 $[\text{cya-}^{14}\text{C}]$ 標識体処理では 7 種の代謝物 (B、C、D、E、J、O及びS)が検出されたが、いずれも 10%TRR 未満であった。 $[\text{pyr-}^{14}\text{C}]$ 標識体処理では、代謝物 B のみ 4.7%TRR 検出された。

土壌処理時の土壌から茎葉への移行は低く、茎葉散布時も茎葉の残留放射能は 速やかに減少した。シアントラニリプロール及び代謝物の綿実及び繰綿への移行 は少ないと考えられた。(参照 1、7)

表 16 茎葉散布処理綿における代謝物

採取時期	1 同日	処理後	9回目	処理前	最終	処理	最終	処理	最終処理 140 日	
1/4/21/1/9/1	1 12 1	人 王 仪		人。之王[1]	7 目	後	13 日後		後 (成熟期)	
試料				茎	葉				綿繰り札	幾の綿屑
11八个十	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
シアント										
ラニリプ	1.89	69.7	1.07	19.7	0.187	37.3	0.115	27.1	0.043	34.4
ロール										
代謝物 B	0.028	1.0	0.190	3.5	0.011	2.3	0.006	1.5	0.008	5.7
代謝物 E	ND	ND	0.039	0.7	ND	ND	ND	ND	ND	ND
代謝物 I	ND	ND	0.089	1.7	0.019	4.1	0.021	4.9	ND	ND
代謝物 C	ND	ND	0.069	1.3	ND	ND	ND	ND	0.007	6.1
代謝物 M	ND	ND	0.030	0.6	ND	ND	ND	ND	ND	ND
代謝物 Q	ND	ND	0.017	0.3	ND	ND	0.005	1.1	0.001	1.2
代謝物 K	ND	ND	0.106	2.0	ND	ND	ND	ND	ND	ND
代謝物 F	ND	ND	0.050	0.9	ND	ND	ND	ND	ND	ND
代謝物S	ND	ND	0.557	10.3	0.025	5.0	0.016	3.8	ND	ND
代謝物J	0.005	0.0	0.049	0.8	0.017	3.5	3.5 1.1 0.014 3.3	0.0	ND ND	ND
代謝物 O	0.091	3.3	1.17	21.7	0.006	1.1		ა.ა		ND
総放射能	2.71	-	5.41	-	0.505	-	0.425	-	0.131	-

ND: 検出されず

表 17 土壌処理における綿繰り機の綿屑中代謝物

抽動光學	[cya	-14C]	[pyr- ¹⁴ C]		
標識位置	mg/kg	%TRR	mg/kg	%TRR	
シアントラニリ	0.025	25.6	0.011	46.8	
プロール					
代謝物 B	0.006	7.5	0.001	4.7	
代謝物 C	< 0.001	1.2	ND	ND	
代謝物 E	< 0.001	1.7	ND	ND	
代謝物 D	0.003	2.6	ND	ND	
代謝物 S	0.005	6.4	ND	ND	
代謝物 J/O	0.004	5.7	ND	ND	
抽出成分	0.090	95.7	0.023	99.9	
総放射能	0.095	-	0.023	-	

ND: 検出されず

(3) トマト

ポット栽培のトマト(品種: Monsterrat)に、 $[cya^{-14}C]$ シアントラニリプロール及び $[pyr^{-14}C]$ シアントラニリプロールの等量混合液を $130\sim151$ g ai/ha の用量で茎葉散布又は水和剤に調製した $[cya^{-14}C]$ シアントラニリプロール若しくは $[pyr^{-14}C]$ シアントラニリプロールを $145\sim161$ g ai/ha の用量で土壌処理した。 1回目の処理は発芽後 3 週目(茎葉散布)又は 7 週目(土壌処理)に行い、いずれも 7 日間隔で計 3 回処理し、経時的に葉又は成熟期の葉及び果実を採取して、植物体内運命試験が実施された。

各試料における総残留放射能の推移は表 18 に示されている。

茎葉散布における葉試料中の残留放射能濃度は、土壌処理後と比較して高く、 最終処理終了後経時的に低下した。茎葉散布及び土壌処理のいずれにおいても、 成熟期果実中の残留放射能濃度は 0.001 mg/kg と微量であったため、放射性成分 の同定を行うことができなかった。

葉試料について、茎葉散布における残留放射能の主要成分は未変化のシアントラニリプロールであり、43.4%TRR~95.3%TRR(0.562~4.15 mg/kg)であった。ほかに 11 種の代謝物(B、C、D、E、I、J、K、M、O、Q及び S)が検出され、このうち代謝物 O は 10%TRR を超えて認められたが、O は光分解物であり、大部分が表面洗浄液から回収された。 [pyr-14C]標識体の土壌処理では、残留放射能が微量のため同定は行われなかった。 [cya-14C]標識体の土壌処理で未変化のシアントラニリプロールが検出されたが、0.010 mg/kg 未満であった。そのほか、代謝物 B、J及び O も検出されたが、微量(0.002 mg/kg 以下)であった。 (参照 1、8)

最終 最終 2 回目 最終 最終 1回目 2回目 採取時期 処理 7 処理 14 成熟期 a) 処理後 処理後 処理後 処理前 処理前 日後 日後 試料 葉 果実 茎葉散布 7.62 2.22 1.30 0.009 0.001 2.55 1.85 8.50 4.81 土壤処理 NC 0.005 NC 0.023 NC 0.030 0.026 0.008 0.001 [cva-14C] 土壤処理 NC0.002NC0.012NC0.014 0.014 0.009 0.001 [pvr-14C]

表 18 各試料中における総残留放射能の推移 (mg/kg)

(4) レタス

ほ場で栽培した非結球レタス(品種: Green Salad Bowl)に、 $[cya^{-14}C]$ シアントラニリプロール及び $[pyr^{-14}C]$ シアントラニリプロールの等量混合液を 150 g ai/ha の用量で茎葉散布又は $[cya^{-14}C]$ シアントラニリプロール若しくは $[pyr^{-14}C]$ シアントラニリプロールを 150 g ai/ha の用量で土壌処理した。初回処理は発芽約 3 週間後(茎葉散布)又は約 7 週間後(土壌処理)に行い、7 日間隔にて計 3 回処理し、経時的に植物体地上部を採取して、植物体内運命試験が実施された。各回処理直後の試料は茎葉散布処理のみから採取した。

茎葉における総残留放射能の推移は表 19 に、茎葉散布試料における代謝物は表 20 に示されている。

茎葉散布試料中の総残留放射能は、土壌処理試料と比較して高濃度で認められたが、最終処理後は急速に低下した。

[cya-14C]標識体及び[pyr-14C]標識体の茎葉散布試料における残留放射能の主要成分は、未変化のシアントラニリプロールであった。茎葉散布後の代謝分解は広範であったが、成熟期に最大 23.3%TRR(0.011 mg/kg)認められた代謝物 Bを除き、ほかの代謝物はいずれも 5%TRR 未満であった。土壌処理試料においても主要成分は未変化のシアントラニリプロールであった。成熟期において、[pyr-14C]標識体処理試料で代謝物 B が 10.0%TRR(0.005 mg/kg)認められたが、[cya-14C]標識体処理試料では代謝物は検出されなかった。(参照 1、9)

a): 最終処理 124 日後(茎葉散布)、最終処理 125 日後(土壌処理)。NC: 分析せず。

表 19 茎葉における総残留放射能の推移 (mg/kg)

採取時期	1回目 処理後	2回目 処理前	2回目 処理後	最終 処理前	最終 処理後	最終 処理 7日後	最終 処理 14 日後	最終 処理 32 日後 (成熟期)
茎葉散布	10.8	1.67	9.62	2.80	7.79	1.99	0.983	0.032
土壤処理 [cya- ¹⁴ C]	NC	0.144	NC	0.049	NC	0.046	0.035	0.012
土壌処理 [pyr- ¹⁴ C]	NC	0.017	NC	0.035	NC	0.009	0.007	0.057

NC:分析せず

表 20 茎葉散布試料における代謝物

	2回目処理前		最終処理前		最終	最終処理		最終処理		最終処理 32 日	
採取時期					7日後		14 日後		後 (成熟期)		
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	
シアント											
ラニリプ	1.32	79.1	2.45	87.3	1.56	78.5	0.716	72.6	0.016	50.3	
ロール											
代謝物 M	0.009	0.5	0.041	1.6	0.031	1.6	ND	ND	ND	ND	
代謝物 Q	0.017	1.0	0.012	0.4	0.051 1.6	1.0	ND	ND	ND	ND	
代謝物 H	0.018	1.2	ND	ND	ND	ND	ND	ND	ND	ND	
代謝物 E	0.012	0.7	ND	ND	0.014	0.7	ND	ND	ND	ND	
代謝物 D	0.010	0.6	ND	ND	0.018	0.9	ND	ND	ND	ND	
代謝物 F	ND	ND	0.036	1.2	ND	ND	ND	ND	ND	ND	
代謝物S	ND	ND	0.042	1.4	0.017	0.9	ND	ND	ND	ND	
代謝物	0.050	2.0	0.050	9.0	0.007	1.4	0.097	0.0	0.001	4.0	
J/O	0.050	3.0	0.058	2.0	0.027	1.4	0.027	2.6	0.001	4.9	
代謝物 B	ND	ND	0.028	1.0	0.021	0.8	0.023	2.3	0.011	23.3	
抽出成分	1.57	94.1	2.81	100	1.77	89.0	0.936	95.2	0.029	92.2	

ND:検出されず

植物体内におけるシアントラニリプロールの主要代謝経路は、1)メチルアミド基とアミド結合の環化によりキナゾリノン誘導体 B を生成、次いで脱メチル化により代謝物 J を生成又はピリジン環のヒドロキシル化を伴う光分解により代謝物 O を生成する経路、2)アリール基のヒドロキシル化により代謝物 O を生成、次いでピリジン環とフェニル環の間のアミド結合の開裂により代謝物 O を生成する経路、3)シアノ基の代謝によりカルボキサミド O を生成、次いでメチルアミド基の脱メチル化により代謝物 O を生成又は酸化的脱アミノ化により代謝物 O を生成する経路等が考えられた。

3. 土壤中運命試験

(1) 好気的湛水土壤中運命試験

壌土 (埼玉) に土/水の高さ比が 5:1 となるように水を添加して湛水状態とし、25°Cで 14 日間プレインキュベーションの後、 $[cya^{-14}C]$ シアントラニリプロール 又は $[pyr^{-14}C]$ シアントラニリプロールを 0.5 μg ai/g 乾土で処理し、 25 ± 2 °Cで 180 日間インキュベートし、経時的に試料を採取して好気的湛水土壌中運命試験が実施された。非滅菌土壌では発生した揮発性化合物を捕集した。

非滅菌及び滅菌土壌における放射能分布及び分解物は表 21 に示されている。

[cya-14C]標識体及び[pyr-14C]標識体処理区間において、放射能分布の推移に明確な差はみられず、ほぼ同量の抽出性放射能及び CO_2 発生量が認められた。非抽出残渣は、非滅菌土壌に比べて滅菌土壌で少なかった。非滅菌土壌における揮発性有機化合物の発生は CO_2 以外には認められなかった。

シアントラニリプロールの分解物には、標識体間で顕著な差はみられず、同一の経路により分解されると考えられた。主要分解物はBであり、そのほかに少量のC、E 及びF も認められた。非滅菌試料でみられた分解物C 及びE は滅菌試料では認められなかったことから、これらの分解物は微生物分解により生成すると考えられた。分解物Bの一部は非生物的分解によって生成するものと考えられた。

好気的湛水土壌中におけるシアントラニリプロールの推定半減期は、非滅菌条件で 20.6 日、滅菌条件で 67 日であった。

シアントラニリプロールの好気的湛水土壌中における分解経路は、生物的及び非生物的作用による主要成分 B 並びに微量成分の C、E 及び F の生成であった。 (参照 1、10)

表 21 非滅菌及び滅菌土壌における放射能分布及び分解物 (%TAR)

処理区		残留成分	兩八	試料採取日					
	处理区	(分解物)	画分	0	30	60	120	180	
		抽出性	表面水	41.5	4.83	3.06	1.71	1.54	
		放射能	土壌	51.7	66.3	65.0	61.7	58.7	
		非抽	出残渣	2.51	23.9	26.5	34.1	34.8	
		CO_2		NS	0.37	0.46	0.78	0.78	
非	[arra = 14 C]	回収率		95.7	95.4	95.0	98.3	95.8	
非滅菌	[cya- ¹⁴ C] 標識体	トシアント	表面水	41.5	2.91	1.91	NS	NS	
			土壌	48.6	37.2	29.5	20.9	17.0	
		分解物 E	表面水	ND	0.58	ND	NS	NS	
			土壌	ND	ND	ND	ND	ND	
		分解物 B	表面水	ND	1.34	1.15	NS	NS	

		土壌	3.09	29.1	35.5	40.9	41.7
	抽出性	表面水	39.3	4.01	3.59	2.18	0.95
	放射能	土壌	51.5	69.1	64.0	61.2	58.0
	非抽	出残渣	2.55	22.5	28.3	33.4	35.6
	C	${ m CO}_2$	NS	0.59	0.69	0.69	0.69
	回」	収率	93.4	96.2	96.6	97.4	95.3
	シアント	表面水	38.6	2.04	2.52	NS	NS
[pyr-14C]	ロール	土壌	49.3	40.2	26.2	23.4	19.3
標識体	分配物 C	表面水	ND	0.34	1.07	NS	NS
	<u> </u>	土壌	ND	ND	ND	ND	ND
	→ 解析 F	表面水	ND	0.44	ND	NS	NS
	フル 月年400 L S	土壌	ND	ND	ND	ND	ND
	八都別場。17	表面水	ND	ND	ND	NS	NS
	万件物 [土壌	ND	ND	4.61	ND	ND
	八海沙州加 D	表面水	0.71	0.82	ND	NS	NS
	刀件物 D	土壌	2.16	28.9	33.2	37.8	38.7
[cya- ¹⁴ C] 標識体	抽出性	表面水	32.3	14.6	10.8	7.22	3.53
	放射能	土壌	60.8	75.5	72.6	73.0	72.8
	非抽出残渣		1.29	7.53	10.3	17.5	18.6
	回」	収率	94.4	97.7	93.7	97.7	95.0
	シアント ラニリプ ロール	表面水	32.3	14.1	9.91	6.13	2.62
		土壌	58.9	57.3	33.5	20.5	15.7
	∠\42 Hm D	表面水	ND	0.55	0.91	1.09	0.91
	フル 月年401 D	土壌	1.86	18.3	39.1	52.5	57.1
	抽出性	表面水	34.8	15.5	9.83	8.06	4.66
	放射能	土壌	60.7	71.4	72.4	71.8	72.3
	非抽	出残渣	1.42	8.84	11.1	16.3	18.1
[22772-140]	回	収率	96.9	95.7	93.3	96.2	95.1
lpyr- ¹⁴ C」 標識体	シアント	表面水	34.8	15.1	8.97	6.95	3.73
示	ラニリプ						
/示映/十	ラニリプ ロール	土壌	58.7	48.1	34.5	23.0	16.8
/示哦 件		土壌表面水	58.7 ND	48.1 0.46	34.5 0.86	23.0	16.8 0.93
	標識体 [cya-14C]	放射能 非抽 で で シアント ラニリル 分解物 C 分解物 E 分解物 E 分解物 B 抽出性 放射能 非抽 回 シラニリル 分解物 B 抽出性 放射能 非抽 回 シラニリル 分解物 B 抽出性 放射能 非抽 面 比 放射能 非抽 面 に かけまままます。 およい かりまままます。 およい で かりまままます。 で で かりまままます。 で で で で で で で で で	抽出性 表面水 土壌 非抽出残渣 でO2 回収率 シアント 表面水 土壌 表面水 土壌 表面水 土壌	抽出性 表面水 39.3 上壌 51.5 末抽出残渣 2.55 で	抽出性 表面水 39.3 4.01 放射能 土壌 51.5 69.1	抽出性 表面水 39.3 4.01 3.59 放射能 土壌 51.5 69.1 64.0 非抽出残渣 2.55 22.5 28.3 CO2 NS 0.59 0.69 回収率 93.4 96.2 96.6 シアント ラニリプロール 土壌 ND	抽出性 表面水 39.3 4.01 3.59 2.18 放射能 土壌 51.5 69.1 64.0 61.2 非抽出残渣 2.55 22.5 28.3 33.4 20.5 22.5 28.3 33.4 20.5 20.6 20

NS: 試料中放射能が3%TAR未満のため分析を行わなかった。ND: 検出されず。

(2) 好気的土壌中運命試験

2種類の土壌 [壌土(フランス)及びシルト質埴壌土(米国)] を試験容器にて 9 日間プレインキュベーション後(水分含量:最大容水量の $40\%\sim60\%$)、 $[cya^{-14}C]$ シアントラニリプロール又は $[pyr^{-14}C]$ シアントラニリプロールを 0.4

μg ai/g 乾土で処理し、 22 ± 3 \mathbb{C} の好気的暗条件下で 358 日間インキュベートして、 好気的土壌中運命試験が実施された。

壌土における主要な分解物は、[cya-14C]標識体及び[pyr-14C]標識体処理とも E であり、41 日に 40.4%TAR~42.3%TAR の最大値を示した後徐々に減少し、358 日には 10.6%TAR 以下となった。そのほか、B、C、E、F、G、H 及び R が検出された。シアントラニリプロールの推定半減期は 9.22 日であった。

シルト質埴壌土における主要な分解物は、 $[cya^{-14}C]$ 標識体及び $[pyr^{-14}C]$ 標識体処理とも E であり、358 日に最大値(42.6%TAR~42.9%TAR)が認められた。ほかに、B、C、F、G 及びI が検出された。シアントラニリプロールの推定半減期は39.0 日であった。

シアントラニリプロールの好気的土壌中における分解経路は、ピリミジノン環への環化による分解物 B の生成とそれに次ぐ F、G 及び R を生成する経路並びにシアノ基のアミドへの変換による分解物 C の生成とそれに次ぐ E、H 及び R を生成する経路が考えられた。(参照 I、II)

(3) 好気的土壤中/嫌気的湛水土壤中運命試験

乾土 50 g 相当の砂壌土(フランス)に約 2 g の水を添加して 11 日間プレインキュベーション後(水分含量:最大容水量の約 44%)、 $[cya^{-14}C]$ シアントラニリプロール又は $[pyr^{-14}C]$ シアントラニリプロールを 0.4 μg ai/g 乾土で土壌表面に滴下し、好気的条件下で 10 日間インキュベートした。その後、水深 $1\sim3$ cm の 湛水状態とし、 20 ± 2 ℃の暗所下で窒素を流して嫌気的条件として最長 120 日間インキュベーションを行い、好気的土壌中/嫌気的湛水土壌中運命試験が実施された。

好気的/嫌気的湛水土壌における放射能分布及び分解物は表 22 に示されている。シアントラニリプロールは好気的及び嫌気的湛水いずれの条件下においても経時的に減少した。嫌気的湛水条件における推定半減期は 4.66 日であった。 [cya-14C]標識体及び[pyr-14C]標識体処理試料において認められた分解物は、B、C、E、F及び G であり、そのうち B が最も多く、[cya-14C]標識体では処理後 30 日に最大値 71.9% TAR、[pyr-14C]標識体で処理後 120 日に 71.3% TAR 認められた。揮発性有機化合物及び CO_2 の発生は認められなかった。嫌気的湛水土壌におけるシアントラニリプロールの分解経路は、好気的湛水土壌及び好気的土壌とほぼ同様であり、分解物 B の生成とそれに次ぐ F及び G の生成並びに C を経て E を生成する経路が考えられた。 (参照 1、12)

表 22 好気的/嫌気的湛水土壌における放射能分布及び分解物 (%TAR)

				試料技	 采取日		
標識体	残留成分	0 (好気 的条件)	10 (好気 的条件)	7	30	60	120
	シアントラニリプ ロール	96.6	48.4	15.4	4.01	1.86	ND
	分解物 B	1.32	33.7	67.3	71.9	70.1	68.4
	分解物 C	ND	5.25	2.48	1.11	ND	ND
	分解物 E	ND	2.87	3.81	2.61	2.23	ND
[cya-14C]	分解物 F	ND	1.61	4.25	9.46	7.67	9.95
	分解物 G	ND	ND	1.38	4.23	8.20	16.2
	非抽出残渣	1.09	2.03	3.72	3.90	4.95	5.52
	CO_2	NS	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	揮発性有機化合物	NS	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	回収率	99.0	95.1	100	97.2	96.6	100
	シアントラニリプ ロール	97.9	51.4	21.5	5.09	2.19	1.20
	分解物 B	ND	34.0	60.9	67.2	65.8	71.3
	分解物 C	ND	4.04	3.62	1.62	ND	ND
	分解物 E	ND	3.06	3.88	4.65	2.05	ND
[pyr-14C]	分解物 F	ND	2.05	4.38	9.04	9.97	7.46
	分解物 G	ND	ND	1.50	5.64	10.5	13.5
	非抽出残渣	1.20	2.14	2.63	3.21	4.98	6.15
	CO_2	NS	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	揮発性有機化合物	NS	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	回収率	99.1	98.0	99.6	97.7	96.5	99.7

ND: 検出されず NS: 試料なし <LOQ: 定量限界未満 (0.17%TAR 未満)

(4)土壤吸着試験

5種類の海外土壌 [シルト質埴壌土 (米国)、砂壌土 (米国)、シルト質埴壌土 (スペイン)、砂壌土 (フランス)及びシルト質壌土 (ドイツ)]並びに4種類の国内土壌 [砂土 (宮崎)、壌土 (埼玉)、壌土 (栃木)及び壌土 (茨城)]にシアントラニリプロールを添加して、土壌吸着試験が実施された。

海外土壌における Freundlich の吸着係数 K_F^{ads} は $2.05\sim5.05$ であり、有機炭素含有率補正値 K_F^{ads} 。は $128\sim266$ であった。国内土壌における Freundlich の吸着係数 K_F^{ads} は $0.747\sim4.33$ であり、有機炭素含有率補正値 K_F^{ads} 。は $95.7\sim159$ であった。(参照 1、13、14)

4. 水中運命試験

(1) 加水分解試験

pH 4(クエン酸緩衝液)、pH 7(マレイン酸塩緩衝液)又は pH 9(ホウ酸塩緩衝液)の各滅菌緩衝液に、 $[cya^{-14}C]$ シアントラニリプロール又は $[pyr^{-14}C]$ シアントラニリプロールを $1.07 \mu g/mL$ となるように添加した後、 $15\pm 1^{\circ}C$ 、 $25\pm 1^{\circ}C$ 又は $35\pm 1^{\circ}C$ の暗所条件下で 30 日間インキュベートして、加水分解試験が実施された。

シアントラニリプロールは、いずれの緩衝液においても 35^{\circ}Cのインキュベーションで最も加水分解が進む傾向を示した。また、pH4緩衝液中では 15^{\circ}C及び 25^{\circ}Cでほとんど加水分解はみられなかったが、pH9緩衝液中では急速に加水分解を受け、25^{\circ}Cでは処理 3 日後に 7.77%TAR ~ 9.84 %TAR に減少した。

全ての試料において、同定された加水分解物は B であった。B は 35 $\mathbb C$ のインキュベーション試料で最も多く生成し、pH 9 緩衝液で生成量が増加する傾向を示した。pH 9 緩衝液の 35 $\mathbb C$ インキュベーション試料において、分解物 B は処理直後に 11.2 $\mathbb T$ $\mathbb T$

シアントラニリプロール及び加水分解物 B の推定半減期は表 23 に示されている。 (参照 1、15)

化合物		シアントラニリプロール								分解	物B
pН	4			7			9			7	9
温度(℃)	15	25	35	15	25	35	15	25	35	35	35
推定半減期 (日)	362	212	55.2	126	30.3	7.51	3.10	0.850	0.576	227	376

表 23 シアントラニリプロール及び加水分解物 B の推定半減期

(2) 水中光分解試験

滅菌酢酸緩衝液(pH 4)及び滅菌自然水[貯水池(英国)]に、 $[cya^{-14}C]$ シアントラニリプロール又は $[pyr^{-14}C]$ シアントラニリプロールを 1 μ g/mL となるように添加した後、15 日間、 $25\pm2^{\circ}$ Cでキセノンアーク灯を用いた人工光源(光強度:456 W/m²、波長範囲:300~800 nm)を照射して水中光分解試験が実施された。

シアントラニリプロールは光照射により急速に分解され、処理 1 日後には滅菌緩衝液で $1.91\%TAR \sim 5.47\%TAR$ 、滅菌自然水で $3.82\%TAR \sim 10.6\%TAR$ となった。シアントラニリプロールの分解に伴い、緩衝液(pH 4)中では分解物 Nが生成し、N は更に分解して O 及び T など複数の分解物を生じた。自然水における主要分解物は O 及び S であった。

シアントラニリプロールの推定半減期は表 24 に示されている。(参照 1、16)

表 24 シアントラニリプロールの推定半減期

	試験条件	pH 4 緩衝液 (光照射)	pH 4 緩衝液 (暗所対照)	自然水 (光照射)	自然水 (暗所対照)
半減	試験条件下	0.171	276	0.217	1.9
期 (日)	北緯 35°春	0.79	-	1.0	-

5. 土壤残留試験

火山灰土・壌土(茨城)、沖積土・砂壌土(山梨)、沖積土・埴壌土(千葉)及び火山灰土・埴壌土(熊本)を用いて、シアントラニリプロール並びに分解物 B、C、E、F、G、H、O、R 及び S を分析対象化合物とした土壌残留試験(ほ場)が実施された。結果は表 25 に示されている。(参照 1、17)

推定半減期(日) 試験 シアントラニリ 濃度 1) 土壌 シアントラニリ プロール プロール+分解物2) 火山灰土・壌土 約 21 約 64 (茨城) 853 g 畑地 ai/ha 沖積土 • 砂壌土 約19 約 53 (山梨) ほ場 試験 沖積土 • 埴壌土 約 0.9 約1 (千葉) 75 g 水田 ai/ha 火山灰土・埴壌土 約 13 約 31

表 25 土壌残留試験成績

(熊本)

6. 作物等残留試験

(1)作物残留試験(国内)

国内において、水稲、野菜、果樹等を用いて、シアントラニリプロール並びに 代謝物 B 及び O を分析対象化合物とした作物残留試験が実施された。

結果は別紙 3 に示されている。シアントラニリプロール並びに代謝物 B 及び O の最大残留値は、いずれも散布 7 日後に収穫した荒茶でそれぞれ 20.7、0.780 及び 1.43 mg/kg であった。(参照 1、18、58、59)

^{1):} 畑地では 18.7%フロアブル及び 10.3%フロアブルをそれぞれ 1 回及び 3 回処理、水田では 0.75%粒剤を 1 回処理した。

 $^{^{2)}}$: 親化合物+分解物の合量値より半減期を求めた(畑地における分析対象化合物: B、C、E、F、G、H、O及びR、水田における分析対象化合物: B、C、G及びO)。

(2)作物残留試験(海外)

海外において、野菜、果樹等を用いて、シアントラニリプロールを分析対象化合物とした作物残留試験が実施された。結果は別紙 4 に示されている。シアントラニリプロールの最大残留値は、最終散布 1 日後に収穫したからしな(茎葉)の20 mg/kg であった。 (参照 56)

(3)後作物残留試験

(4) 畜産物残留試験

① 泌乳牛

泌乳牛(ホルスタイン種、一群雌 3 頭)にシアントラニリプロールを 0.088、0.276、0.82 及び 3.15 mg/kg 体重/日(3.53、11.7、35.0 及び 112 mg/kg 飼料相当)で 28 日間カプセル経口投与して、シアントラニリプロール並びに代謝物 B、C、D、I、J、K 及び Q を分析対象化合物とした畜産物残留試験が実施された。 試料として、乳汁は 1 日 2 回、肝臓、腎臓、筋肉及び脂肪は最終投与 24 時間後に採取された。また、雌 3 頭に 112 mg/kg 飼料相当で 28 日間経口投与し、最終投与 4、10 及び 15 日後に試料を採取して、休薬後の残留値が測定された。

結果は別紙5に示されている。

各分析対象化合物の最大残留値は、シアントラニリプロールで $2.1~\mu g/g$ (肝臓)、代謝物 B で $0.45~\mu g/g$ (脂肪)、C で $0.011~\mu g/g$ (肝臓)、D で $0.012~\mu g/g$ (腎臓)、J で $0.57~\mu g/g$ (肝臓)、K で $0.15~\mu g/g$ (腎臓)、Q で $0.28~\mu g/g$ (乳汁)であり、代謝物 I はいずれの試料においても定量限界 $(0.01~\mu g/g)$ 未満であった。

休薬後の各試料における残留値は速やかに減少し、乳汁、肝臓及び腎臓では最終投与10日後、筋肉では4日後、脂肪では15日後にはいずれの残留成分も定量限界未満となった。(参照63)

② 産卵鶏

産卵鶏(品種不明、一群雌 $3\sim4$ 羽)にシアントラニリプロールを 0.24、0.86 及び 2.34 mg/kg 体重/日(3、10 及び 30 mg/kg 飼料相当)で 28 日間カプセル経口投与して、シアントラニリプロール並びに代謝物 B、C、D、I、J、K 及び Q

を分析対象化合物とした畜産物残留試験が実施された。試料として、卵は1日2回、肝臓、筋肉及び皮膚(脂肪付)は最終投与6時間後に採取された。また、雌3羽に2.37 mg/kg 体重(30 mg/kg 飼料相当)で28日間経口投与し、最終投与5、9及び14日後に試料を採取して、休薬後の残留値が測定された。

結果は別紙6に示されている。

各分析対象化合物の最大残留値は、シアントラニリプロールで $0.80~\mu g/g$ (全 卵)、代謝物 B で $0.41~\mu g/g$ (全卵)、C で $0.011~\mu g/g$ (肝臓)、D で $0.083~\mu g/g$ (肝臓)、J で $0.12~\mu g/g$ (全卵)、K で $0.32~\mu g/g$ (肝臓)、Q で $0.072~\mu g/g$ (肝臓)であり、代謝物 I はいずれの試料においても定量限界($0.01~\mu g/g$)未満であった。

休薬後は各試料における残留値は速やかに減少し、全卵、筋肉及び皮膚(脂肪付)では最終投与5日後、肝臓では9日後には全ての残留成分が定量限界未満となった。(参照63)

(5) 推定摂取量

別紙3の作物残留試験並びに別紙5及び6の畜産物残留試験の成績に基づき、シアントラニリプロールを暴露評価対象物質とした際に食品中から摂取される推定摂取量が表26に示されている(別紙7参照)。

なお、本推定摂取量の算定は、登録されている又は申請された使用方法から、 シアントラニリプロールが最大の残留を示す使用条件で適用作物に使用され、加 工・調理による残留農薬の増減が全くないとの仮定の下に行った。

 国民平均
 小児(1~6歳)
 妊婦
 高齢者(65歳以上)

 (体重:55.1 kg)
 (体重:16.5 kg)
 (体重:58.5 kg)
 (体重:56.1 kg)

95.1

表 26 食品中より摂取されるシアントラニリプロールの推定摂取量

229

338

7. 一般薬理試験

265

摂取量

(µg/人/目)

シアントラニリプロールのラット及びマウスを用いた一般薬理試験が実施された。結果は表 27 に示されている。 (参照 1、20)

表 27 一般薬理試験

=======================================	式験の種類	動物種	動物数	投与量 (mg/kg 体重) (投与経路)*	最大無作用量(mg/kg 体重)	最小作用量(mg/kg体重)	結果の概要
中枢独	一般状態(多次元観察法)	SD ラット	雌雄 各 5	0、500、 1,000、2,000 (経口)	2,000	-	影響なし
枢神経系	一般状態(多次元観察法)	ICR マウス	雌雄 各 3	0、500、 1,000、2,000 (経口)	2,000	-	影響なし
呼吸器系	呼吸状態 及び呼吸数	SD ラット	雄 5	0、500、 1,000、2,000 (経口)	2,000	-	影響なし
循環器系	血圧及び 心拍数	SD ラット	雄 5	0、500、 1,000、2,000 (経口)	2,000	-	影響なし

*:溶媒は蒸留水を用いた。

-:最小作用量は設定されず。

8. 急性毒性試験

(1) 急性毒性試験

シアントラニリプロール原体のラットを用いた急性毒性試験が実施された。結果は表 28 に示されている。(参照 1、21、22、23、64)

表 28 急性毒性試験概要 (原体)

投与経路	動物種	LD_{50} (mg	/kg 体重)	観察された症状		
双 子 座 蹈	到777年	雄	雌	税余された症状		
	SD ラット		>5 000	投与量:5,000 mg/kg 体重		
経口	雌 3 匹 a		>5,000	症状及び死亡例なし		
	ICR マウス		> 5 000	投与量:不明		
	雌5匹a		>5,000	症状及び死亡例なし		
 経皮	SD ラット	>5,000	>5,000	症状及び死亡例なし		
経及	雌雄各5匹	>5,000	>5,000			
	CD =1	$ m LC_{50}~(mg/L)$		暴露直後の雄2匹及び雌3匹		
吸入	SDラット	> 7 0	> T 0	に部分閉眼、1日後に消失。		
	雌雄各 5 匹	>5.2	>5.2	死亡例なし		

a:上げ下げ法による評価

代謝物 \mathbf{E} のラットを用いた急性経口毒性試験が実施された。結果は表 $\mathbf{29}$ に示されている。 (参照 $\mathbf{1}$ 、 $\mathbf{24}$)

表 29 急性経口毒性試験概要(代謝物)

被験物質	動物種	LD ₅₀ (mg/kg 体重) 雌	観察された症状
代謝物 E	SD ラット 雌 6 匹	>5,000	症状及び死亡例なし

(2) 急性神経毒性試験

SD ラット (一群雌雄各 12 匹) を用いた単回経口 (原体:0、250、1,000 及び 2,000 mg/kg 体重) 投与による急性神経毒性試験が実施された。

本試験において、いずれの投与群においても検体投与による影響は認められなかったので、無毒性量は雌雄とも本試験の最高用量の 2,000 mg/kg 体重であると考えられた。 急性神経毒性は認められなかった。 (参照 1、25)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼刺激性及び皮膚刺激性試験が実施された。その結果、眼刺激性試験において、検体適用 1 時間後に結膜発赤及び分泌物が認められたが、適用 24 時間後には回復した。皮膚刺激性は認められなかった。

Hartley モルモットを用いた皮膚感作性試験(Maximization 法)が実施され、結果は陰性であった。(参照 1、26、27、28)

10. 亜急性毒性試験

(1) 28 日間亜急性毒性試験(ラット)

SD ラット (一群雌雄各 5 匹) を用いた混餌 (原体:0、600、2,000、6,000 及 び 20,000 ppm: 平均検体摂取量は表 30 参照) 投与による 28 日間亜急性毒性試験が実施された。

表 30 28 日間亜急性毒性試験 (ラット) の平均検体摂取量

投与群		600 ppm	$2,\!000~\mathrm{ppm}$	$6,000 \; \mathrm{ppm}$	$20,000 \; \mathrm{ppm}$
平均検体摂取量	雄	53	175	528	1,780
(mg/kg 体重/日)	雌	62	188	595	1,950

各投与群で認められた毒性所見は表 31 に示されている。

2,000 ppm 以上投与群の雄で肝 UDP-GT 活性、6,000 ppm 以上投与群の雌で P450 が増加した。雌雄とも投与によるβ酸化の誘導は認められなかった。

本試験において、2,000 ppm 以上投与群の雌雄で小葉中心性肝細胞肥大等が認められたので、無毒性量は雌雄とも 600 ppm (雄:53 mg/kg 体重/日、雌:62 mg/kg 体重/日)であると考えられた。 (参照 1、29)

表 31 28 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
20,000 ppm	・RBC 減少	・甲状腺ろ胞細胞肥大
6,000 ppm 以上	・Hb 及び Ht 減少 ・有棘赤血球及び赤血球変形の発生頻度及び程度の増加 ¹⁾ ・肝絶対重量、比重量 ² 及び対脳重量比 ³ 増加	・有棘赤血球及び赤血球変形の発生頻度及び程度の増加 ¹⁾ ・肝絶対重量、比重量及び対脳重量比増加 ²⁾ ・甲状腺絶対、比重量及び対脳重量比増加 ³⁾
2,000 ppm 以上	・小葉中心性肝細胞肥大 4 ・甲状腺ろ胞細胞肥大 6	・小葉中心性肝細胞肥大 ⁵⁾
600 ppm	毒性所見なし	毒性所見なし

- 1):統計検定は実施されていない。
- 2): 6,000 ppm 投与群の絶対重量に統計学的有意差はないが投与の影響と考えられた。
- 3): 6,000 ppm 投与群の比重量に統計学的有意差はないが投与の影響と考えられた。
- 4): 2,000 ppm 投与群で統計学的有意差はないが投与の影響と考えられた。
- 5): 6,000 ppm 投与群で統計学的有意差はないが投与の影響と考えられた。
- 6): 6,000 ppm 投与群まで統計学的有意差はないが投与の影響と考えられた。

(2)90日間亜急性毒性試験(ラット)

SD ラット [主群:一群雌雄各 10 匹、衛星群 (28 日投与群):一群雌雄各 5 匹]を用いた混餌 (原体:0、100、400、3,000 及び 20,000 ppm:平均検体摂取量は表 32 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 32 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

投与群		100 ppm	400 ppm	3,000 ppm	20,000 ppm
平均検体摂取量 雄		5.7	22.4	168	1,150
(mg/kg 体重/日)	雌	6.9	26.6	202	1,350

各投与群で認められた毒性所見は表 33 に示されている。

400 ppm 以上投与群の雌雄で肝 UDP-GT 活性が、3,000 ppm 以上投与群の雄及び 20,000 ppm 投与群の雌で肝 P450 が増加した。

20,000 ppm 投与群の雄で軽微から軽度な副腎束状帯小型空胞化が増加したが、ラットにおける甲状腺及び副腎に対する影響試験 [14.(1)] において、副腎に機能的な異常は認められず、細胞障害を示唆する形態学的変化もなかったこと、2年間慢性毒性/発がん性併合試験 [11.(2)] では増加しなかったことから、本所見は毒性影響とは考えられなかった。

² 体重比重量を比重量という(以下同じ)。

³ 脳重量に比した重量を対脳重量比という(以下同じ)。

本試験において、400 ppm 以上投与群の雄で甲状腺ホルモン(T_3 及び T_4)の減少が認められ、同投与群の雌で甲状腺ろ胞細胞肥大等が認められたので、無毒性量は雌雄とも 100 ppm(雄:5.7 mg/kg 体重/日、雌:6.9 mg/kg 体重/日)であると考えられた。(参照 1、30)

(副腎皮質束状帯小型空胞化及び甲状腺ろ胞上皮細胞肥大の発生機序については [14.(1)~(3)]を参照)

表 33 90 日間亜急性毒性試験(ラット)で認められた毒性所見

投与群	雄	雌
20,000 ppm	・肝絶対重量、比重量及び対脳重	・甲状腺比重量増加 ¹⁾
	量比増加	・Chol 増加
	・甲状腺ろ胞細胞肥大	・TG 減少
	・TSH 増加	
3,000 ppm 以上	·小葉中心性肝細胞肥大2)	肝対脳重量比増加
400 ppm 以上	・T ₃ 及び T ₄ 減少	・T ₃ 及び T ₄ 減少
		・肝絶対及び比重量増加 ³⁾
		・甲状腺絶対重量増加 ¹⁾
		·小葉中心性肝細胞肥大4)
		・甲状腺ろ胞細胞肥大 5)
100 ppm	毒性所見なし	毒性所見なし

- 1):統計学的有意差はないが投与の影響と考えられた。
- 2): 3,000 ppm 投与群では統計学的有意差はないが投与の影響と考えられた。
- 3): 400 ppm 投与群では絶対重量に統計学的有意差はないが投与の影響と考えられた。
- 4): 400 ppm 投与群では統計学的有意差はないが投与の影響と考えられた。
- 5): 400 及び 3,000 ppm 投与群では統計学的有意差はないが投与の影響と考えられた。

(3) 28 日間亜急性毒性試験(マウス)

ICR マウス(主群:一群雌雄各 5 匹、生化学測定群:一群雌雄各 5 匹)を用いた混餌(原体:0、300、1,000、3,000 及び 7,000 ppm: 平均検体摂取量は表 34参照)投与による 28 日間亜急性毒性試験が実施された。

表 34 28 日間亜急性毒性試験(マウス)の平均検体摂取量

投与群		300 ppm	1,000 ppm	3,000 ppm	7,000 ppm
平均検体摂取量	雄	53	175	528	1,260
(mg/kg 体重/日)	雌	63	212	664	1,480

3,000 ppm 以上投与群の雄及び 300 ppm 以上投与群の雌で肝 P450 が増加した。3,000 ppm 以上投与群の雌雄においては、肝絶対重量、比重量及び対脳重量 比の有意な増加が認められた。

本試験において、3,000 ppm 以上投与群の雌雄で肝重量の増加が認められたので、無毒性量は雌雄とも 1,000 ppm (雄: 175 mg/kg 体重/日、雌: 212 mg/kg

体重/日) であると考えられた。 (参照1、31)

(4)90日間亜急性毒性試験(マウス)

ICRマウス(主群:一群雌雄各 10 匹、衛星群:一群雌雄各 5 匹)を用いた混餌(原体:0、50、300、1,000 及び 7,000 ppm:平均検体摂取量は表 35 参照)投与による 90 日間亜急性毒性試験が実施された。

投与群 300 ppm 1,000 ppm 7,000 ppm50 ppm 平均検体摂取量 雄 7.247.1150 1,090 (mg/kg 体重/日) 雌 9.758.1 204 1,340

表 35 90 日間亜急性毒性試験(マウス)の平均検体摂取量

全投与群の雄で軽微から軽度な副腎束状帯小型空胞化が増加したが、変化の程度に用量相関性は認められなかった。また、マウスにおける副腎に対する影響試験 [14.(3)] において、副腎に機能的な異常は認められず、細胞障害を示唆する形態学的変化もなかったこと、18 か月間発がん性試験 [11.(3)] では増加しなかったことから、本所見は毒性影響とは考えられなかった。

本試験において、7,000 ppm 投与群の雌雄で肝重量の増加及び小葉中心性肝細胞肥大、同投与群の雌で肝細胞壊死の増加が認められたので、無毒性量は雌雄とも 1,000 ppm(雄:150 mg/kg 体重/日、雌:204 mg/kg 体重/日)であると考えられた。(参照 1、32)

(副腎皮質束状帯小型空胞化の発生機序については「14.(1)及び(3)]を参照)

(5)90日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた混餌(原体:0、30、100、1,000 及び10,000 ppm: 平均検体摂取量は表 36 参照)投与による 90 日間亜急性毒性試験が実施された。

投与群 10,000 ppm 30 ppm 100 ppm 1,000 ppm 平均検体摂取量 雄 0.983.08 31.9281(mg/kg 体重/日) 雌 294 0.97 3.48 34.3

表 36 90 日間亜急性毒性試験(イヌ)の平均検体摂取量

各投与群で認められた毒性所見は表37に示されている。

本試験において、1,000 ppm 以上投与群の雌雄で TP 及び Alb 減少等が認められたので、無毒性量は雌雄とも 100 ppm (雄: 3.08 mg/kg 体重/日、雌: 3.48 mg/kg 体重/日)であると考えられた。 (参照 1、34)

表 37 90 日間亜急性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
10,000 ppm	・死亡例(1 例) ¹⁾ (投与 52 日)	・活動低下(投与65日)、削痩(投
	・活動低下(投与 50 日以降)、削	与 85 日) 又は食欲不振(発現日
	痩(投与 18 日以降)又は食欲不	不明)
	振 (発現日不明)	・体重増加抑制 ²⁾ (投与 2~3 週)
	・体重増加抑制(投与 2~3 週)及	・ALT 増加
	び摂餌量減少(投与 1~3 週)	・Chol、Glu ²⁾³⁾ 及びカルシウム減
	・Chol 及び Glu 減少	少
	・胆管上皮過形成	胆管上皮過形成
	・多発性動脈炎 ³⁾	· 多発性動脈炎 3)
	・肝単細胞壊死及び類洞白血球増	・肝単細胞壊死、クッパー細胞肥
	多症	大及び肉芽腫性炎症
1,000 ppm 以上	・TP 及び Alb 減少	・TP ²⁾ 及び Alb 減少
	・ALP 増加	・ALP 増加
	・カルシウム減少	・肝絶対重量、比重量及び対脳重
	・肝絶対重量、比重量及び対脳重	量比増加
	量比增加4)	
100 ppm 以下	毒性所見なし	毒性所見なし

注) 病理組織学的検査結果について統計検定は実施されなかった。

(6) 28 日間亜急性毒性試験(イヌ) <参考資料 4>

ビーグル犬 (一群雌雄各 2 匹) を用いた混餌 (原体:0、1,000、10,000 及び 40,000 ppm: 平均検体摂取量は表 38 参照) 投与による 28 日間用量設定試験が 実施された。

表 38 28 日間亜急性毒性試験(イヌ)の平均検体摂取量

投与群		1,000 ppm	10,000 ppm	40,000 ppm
平均検体摂取量	雄	35	311	1,043
(mg/kg 体重/日)	雌	35	335	1,240

各投与群で認められた毒性所見は表39に示されている。

全投与群の雌雄の肝臓において、総 P450 並びに個々の酵素 CYP2B1/2、3A2 及び 4A1/2/3 の誘導が認められた。 (参照 1、33)

42

^{1):} 死因は自然発生性の幼若性多発性動脈炎症候群と一致する所見に起因する心臓及び冠動脈への影響によるものと考えられた。

^{2):}統計学的有意差はないが投与の影響と考えられた。

^{3):} 自然発生性の幼若性多発性動脈炎症候群と一致する所見であったが、投与による増悪化の可能性があると考えられた。

^{4): 10,000} ppm 投与群では、絶対重量及び対脳重量比に統計学的有意差はないが投与の影響と考えられた。

⁴ 使用動物が一群雌雄各 2 例と少ないため、参考資料とした。

投与群 雄 · AST 增加 ・AST、ALT 及び SDH 増加(1 40,000 ppm 例) ・肝細胞アポトーシス(1例) ・肝絶対重量、比重量及び対脳重 • Chol 減少 10,000 ppm 以 ・GGT 増加 量比增加 上 1,000 ppm 以<u>上</u> ・体重増加抑制及び摂餌量減少 ・体重増加抑制及び摂餌量減少 ・ALP 増加 ・ALP 増加 ・Alb 及び Chol 減少 · Alb 減少 ・肝絶対重量、比重量及び対脳重 量比增加

表 39 28 日間亜急性毒性試験 (イヌ) で認められた毒性所見

(7) 90 日間亜急性神経毒性試験 (ラット)

SD ラット(一群雌雄各 12 匹)を用いた混餌(原体:0、200、2,000 及び 20,000 ppm: 平均検体摂取量は表 40 参照) 投与による 90 日間亜急性神経毒性試験が実施された。

表 40	90 H	間亜急性	抽終畫性試驗	(ラット)	の平均検体摂取量
12 70	\sim \sim	1017510717	_ T 小工 〒〒 丄 口 八 川 入		

投与群		200 ppm	$2,000~\mathrm{ppm}$	20,000 ppm
平均検体摂取量	雄	11.4	116	1,190
(mg/kg 体重/日)	雌	14.0	137	1,400

本試験において、いずれの投与群においても検体投与の影響は認められなかったので、無毒性量は、雌雄とも本試験の最高用量 20,000 ppm(雄:1,190 mg/kg体重/日、雌:1,400 mg/kg体重/日)であると考えられた。 亜急性神経毒性は認められなかった。(参照 1、35)

(8) 28 日間亜急性経皮毒性試験 (ラット)

SD ラット (一群雌雄各 10 匹) を用いた経皮 (原体:0、100、300 及び1,000 mg/kg 体重/日、6 時間/日)投与による 28 日間亜急性経皮毒性試験が実施された。

100 mg/kg 体重/日以上投与群の雌雄で軽微又は軽度の紅斑が認められたが、ほかに検体投与による影響は認められなかった。一般毒性に関する無毒性量は、雌雄とも本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。(参照 64)

(9) 28 日間亜急性毒性試験(代謝物E、ラット)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (代謝物 E:0、100、400、3,000 及び 20,000 ppm: 平均検体摂取量は表 41 参照) 投与による 28 日間亜急性毒性試験が実施された。

注) 有意差検定は実施していないが投与の影響と考えられた。

表 41 28 日間亜急性毒性試験(代謝物 E、ラット)の平均検体摂取量

投与群		100 ppm	400 ppm	3,000 ppm	20,000 ppm
平均検体摂取量	雄	7	29	212	1,450
(mg/kg 体重/日)	雌	8	31	232	1,470

3,000 ppm 以上投与群の雄で TSH 増加傾向、400 ppm 以上投与群の雄で T_4 減少が認められたが、関連する臓器重量変化及び病理組織学的変化が認められなかったため、JMPR は毒性とは判断しておらず、食品安全委員会はこれを支持した。

本試験において、いずれの投与群においても検体投与の影響は認められなかったことから、無毒性量は雌雄とも本試験の最高用量 20,000 ppm (雄: 1,450 mg/kg体重/日、雌: 1,470 mg/kg体重/日)であると考えられた。 (参照 64)

11. 慢性毒性試験及び発がん性試験

(1)1年間慢性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹、5,000 ppm のみ雌雄各 7 匹)を用いた混餌(原体:0、40、200、1,000 及び 5,000 ppm 5 : 平均検体摂取量は表 42 参照)投与による 1 年間慢性毒性試験が実施された。5,000 ppm 投与群では回復性を観察するために、投与 12 週間後雄 2 匹及び雌 3 匹には残りの 40 週間に基礎飼料が給餌された。

表 42 1年間慢性毒性試験(イヌ)の平均検体摂取量

投与群		40 ppm	200 ppm	1,000 ppm	5,000 ppm
平均検体摂取量	雄	0.96	5.67	27.0	144
(mg/kg 体重/日)	雌	1.12	6.00	27.1	133

各投与群で認められた毒性所見は表 43 に示されている。

ALP については、40 ppm 投与群雄においても、対照群と比べ有意な増加が認められたが、試験開始前の ALP が対照群のみ相対的に低値を示したことに加え、40 ppm 投与群の投与前 2 週の ALP 値と比較すると差は認められなかったこと、変化の程度が軽微であったこと、器質的変化が認められなかったことから、毒性影響とは考えられなかった。

観察された検体投与による影響は、いずれも可逆的であった。

本試験において、200 ppm 以上投与群の雄で ALP 増加等が認められ、1,000

⁵ 5,000 ppm 投与群雄 1 例が投与開始 80 日に切迫と殺されたため、回復群に割付けられていた動物が 代替として主群に割り当てられた。 ppm 以上投与群の雌で ALP 及び ALT 増加等が認められたので、無毒性量は雄で 40 ppm(0.96 mg/kg 体重/日)、雌で 200 ppm(6.00 mg/kg 体重/日)であると考えられた。(参照 1、38、39)

表 43 1年間慢性毒性試験(イヌ)で認められた毒性所見

AH. H. HM.	Lu.	44.11.
投与群	雄	雌
5,000 ppm	▶・切迫と殺[1 例、投与 80 日:動脈	・動脈炎 1)(切迫と殺動物)
	炎 ¹⁾ 、心筋壊死、心筋炎症、骨髄球	・体重増加抑制 ²⁾
	系細胞増生を伴う造血亢進、自発運	・GGT 増加
	動低下(投与 9~12 日)、運動失調	・胆嚢粘膜上皮過形成 ⁵⁾
	(投与 12 日)及び痙攣(投与 11	・胆汁うっ滞 ⁵⁾
	目)]	
	• 体重增加抑制 ²⁾	
	・GGT 増加 ²⁾	
	・甲状腺上皮小体絶対、比重量及び対	
	脳重量比増加	
	・肝門脈域慢性活動性炎症 ⁵⁾	
	・胆嚢粘膜上皮過形成 ⁵⁾	
	・胆汁うっ滞 5)6)	
	• 腎尿細管空胞化 ⁵⁾	
1,000 ppm	・ALT ²⁾ 増加	・ALP 及び ALT4)増加
以上	・TP³)及び Alb 減少	・TP 及び Alb 減少
	• 動脈炎 ¹⁾	・肝臓/胆嚢絶対 ⁴⁾ 、比重量及び対脳重
	・肝細胞変性(小葉中心部) ⁵⁾	量比 4)增加
		・肝細胞変性(小葉中心部) ⁵⁾
		• 肝門脈域慢性活動性炎症 ⁵⁾
200 ppm以上	・ALP 増加	200 ppm 以下
	・肝臓/胆嚢絶対、比重量及び対脳重	毒性所見なし
	量比増加	
40 ppm	毒性所見なし	

- 1): 自然発生性の幼若性多発性動脈炎症候群と一致する所見であったが、投与による増悪化の可能性があると考えられた。
- 2): 有意差はないが投与の影響と考えられた。
- 3): 5,000 ppm 投与群で有意差はないが投与の影響と考えられた。
- 4): 1,000 ppm 投与群で有意差はないが投与の影響と考えられた。
- 5):統計学的検査は実施せず。
- 6): 1,000 ppm 投与群でも 1 例に認められたが、胆嚢粘膜上皮過形成等の関連する変化が認められた用量における変化を毒性影響と判断した。

(2)2年間慢性毒性/発がん性併合試験(ラット)

SD ラット(発がん性群:一群雌雄各 60 匹、慢性毒性試験群:一群雌雄各 10 匹)を用いた混餌(原体:0、20、200、2,000 及び 20,000 ppm:平均検体摂取量は表 44 参照)投与による 2 年間慢性毒性/発がん性併合試験が実施された。なお、雌については対照群の生存率が低値を示したため、投与期間 103 週で試験を終了させた。

表 44 2 年間慢性毒性/発がん性併合試験 (ラット) の平均検体摂取量

投与群		20 ppm	200 ppm	2,000 ppm	20,000 ppm
平均検体摂取量	雄	0.8	8.3	84.8	907
(mg/kg 体重/日)	雌	1.1	10.5	107	1,160

各投与群で認められた毒性所見は表 45 に示されている。

本試験において、2,000 ppm 以上投与群の雄で変異肝細胞巣(明細胞性及び好酸性)等が、同群の雌で小葉中心性肝細胞肥大等が認められたので、無毒性量は雌雄とも 200 ppm(雄:8.3 mg/kg 体重/日、雌:10.5 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 1、36)

表 45-1 2 年間慢性毒性/発がん性併合試験(ラット)で認められた毒性所見

投与群	雄	雌
20,000 ppm	・体重増加抑制(投与1週以降)	• 慢性進行性腎症
	・GGT、AST ¹⁾ 、ALT ¹⁾ 及びSDH ¹⁾	
	増加	
	・肝絶対重量、比重量及び対脳重	
	量比増加	
	小葉中心性肝細胞肥大	
	好塩基性変異肝細胞巣	
	• 好酸性変異肝細胞巣	
2,000 ppm	• 明細胞性変異肝細胞巣	・体重増加抑制(投与1週以降)
以上	• 肝限局性空胞変性	・小葉中心性肝細胞肥大
200 ppm 以下	毒性所見なし	毒性所見なし

^{1):}統計学的有意差はないが、投与の影響と考えられた。

表 45-2 1年間慢性毒性試験(ラット)で認められた毒性所見

投与群	雄	雌
20,000 ppm	・体重増加抑制(投与1週以降)	
	・GGT、AST ¹⁾ 、ALT ¹⁾ 及びSDH ¹⁾	
	増加	
2,000 ppm 以上	・肝比重量及び対脳重量比増加 ²⁾	体重増加抑制(投与1週以降)
	・小葉中心性肝細胞肥大	肝比重量増加
		· 小葉中心性肝細胞肥大 ¹⁾
200 ppm 以下	毒性所見なし	毒性所見なし

^{1):}統計学的有意差はないが、投与の影響と考えられた。

(3) 18 か月間発がん性試験 (マウス)

ICR マウス (一群雌雄各 60 匹) を用いた混餌 (原体:0、20、150、1,000 及び 7,000 ppm: 平均検体摂取量は表 46 参照) 投与による 18 か月間発がん性試験が実施された。

^{2): 20,000} ppm 投与群では対体重比重量のみ増加。

表 46 18 か月間発がん性試験(マウス)の平均検体摂取量

投与群		20 ppm	150 ppm	1,000 ppm	7,000 ppm
平均検体摂取量	雄	2.0	15.5	104	769
(mg/kg 体重/日)	雌	2.4	18.6	131	904

各投与群で認められた毒性所見は表 47 に示されている。

検体投与により発生頻度の増加した腫瘍性病変は認められなかった。

本試験において、1,000 ppm 投与群の雌雄で肝重量増加及び小葉中心性肝細胞肥大が認められたので、無毒性量は雌雄とも 150 ppm (雄:15.5 mg/kg 体重/日、雌:18.6 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 1、37)

表 47 18 か月間発がん性試験(マウス)で認められた毒性所見

投与群	雄	雌
7,000 ppm	· 体重增加抑制(投与1週以降)	
1,000 ppm 以上	・肝絶対重量 ¹⁾ 、比重量 ¹⁾ 及び対	・肝絶対重量、比重量及び対脳
	脳重量比増加	重量比増加 1)
	小葉中心性肝細胞肥大	小葉中心性肝細胞肥大
150 ppm 以下	毒性所見なし	毒性所見なし

^{1): 1,000} ppm 投与群では統計学的有意差はないが投与の影響と考えられた。

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット (一群雌雄各 30 匹) を用いた混餌 (原体:0、20、200、2,000 及び 20,000 ppm: 平均検体摂取量は表 48 参照) 投与による 2 世代繁殖試験が実施された。

表 48 2 世代繁殖試験 (ラット) の平均検体摂取量

投与群			20 ppm	200 ppm	2,000 ppm	20,000 ppm
	D ###	雄	1.1	11.0	111	1,130
平均検体摂取量	P世代	雌	1.4	13.9	136	1,340
(mg/kg 体重/日)		雄	1.4	14.6	151	1,580
	F ₁ 世代	雌	1.9	20.1	203	2,130

各投与群で認められた毒性所見は表 49 に示されている。

本試験において、親動物では 2,000 ppm 以上投与群雄で小葉中心性肝細胞肥大等が認められ、200 ppm 以上投与群雌で甲状腺の絶対及び比重量増加等が認められたので、無毒性量は雄で 200 ppm $(P \, \text{雄}: 11.0 \, \text{mg/kg} \, \text{体重/日} \, \text{、} F_1 \, \text{雄}: 14.6$

mg/kg 体重/日)、雌で 20 ppm(P 雌: 1.4 mg/kg 体重/日、 F_1 雌: 1.9 mg/kg 体重/日)、児動物では 2,000 ppm 以上投与群雌雄で胸腺絶対重量及び対脳重量比減少等が認められたので、無毒性量は雌雄とも 200 ppm(P 雄: 11.0 mg/kg 体重/日、P 雌 13.9 mg/kg 体重/日、 F_1 雄: 14.6 mg/kg 体重/日、 F_1 雌: 20.1 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 1、40)

表 49 2世代繁殖試験 (ラット) で認められた毒性所見

	北上来	親 : P、	児: F 1	親 : F ₁ 、	児:F ₂
	投与群	雄	雌	雄	雌
	20,000 ppm	・体重増加抑制 (投与 1~8 日 以降)及び摂餌 量減少(投与 1~8 日) ・肝絶対重量増加 ・甲状腺絶対重 量、比重量及び 対脳重量比増 加 ・甲状腺ろ胞上 皮細胞肥大1)		・体重増加抑制 及び摂餌量減 少 ・甲状腺絶対重 量、比重量及び 対脳重量比増 加 ・甲状腺ろ胞上 皮細胞肥大 ¹⁾	 ・摂餌量減少 (哺育 11-15 日) ・脾及び胸腺絶 対重量、比重量 及び対脳重量 比減少 ・甲状腺ろ胞上 皮細胞肥大 ¹⁾
親動物	2,000 ppm 以上	・肝比重量及び対 脳重量比増加 ・小葉中心性肝細 胞肥大 ¹⁾	・体重増加抑制 (投与1~8日 以降)及(投 量減少(投 1~8日) ・肝絶量が動 重量が加 ・腫量量が加 ・胸重量がが加 ・地重量を ががか ・甲状胞を ががか ・甲状胞を ががか ・甲状胞を ががした。 がいた。 がいた。 がいた。 がいた。 がいた。 がいた。 がいた。 がい	・小葉中心性肝細 胞肥大 ¹⁾ ・肝比重量増加	・体重増加抑制 ・肝及び副腎絶 対重量、比重 量及び対脳重 量比増加 ・小葉中心性肝 細胞肥大 ¹⁾
	200 ppm 以上	200 ppm 以下 毒性所見なし	 ・甲状腺絶対重量、比重量及び対脳重量比増加 ・胸腺萎縮 ¹⁾ 	200 ppm 以下 毒性所見なし	・甲状腺絶対重 量、比重量及び 対脳重量比増 加 ²⁾
111	20 ppm	1000円の中心	毒性所見なし		毒性所見なし
児動	20,000 ppm	・脱水症状 ・体重増加抑制	・脱水症状 ・体重増加抑制		
物		・胸腺絶対重量及	・胸腺絶対重量		

投与群		親 : P、	児:F ₁	親 : F ₁ 、	児: F 2
	汉 子群	雄	雌	雄	雌
		び対脳重量比減	及び対脳重量		
		少	比減少		
			・脾絶対重量及		
			び対脳重量比		
			減少		
	2,000 ppm	2,000 ppm 以下	2,000 ppm 以下	・体温低下	・体温低下
	以上	毒性所見なし	毒性所見なし	・体重増加抑制	• 体重増加抑制
				・胸腺及び脾絶	・胸腺及び脾絶
				対重量及び対	対重量及び対
				脳重量比減少	脳重量比減少
	200 ppm			毒性所見なし	毒性所見なし
	以下				

^{1):}統計学的有意差はないが、検体投与の影響と考えられた。

(2) 発生毒性試験 (ラット)

SD ラット (一群雌 22 匹) の妊娠 $6\sim20$ 日に強制経口 (原体:0、20、100、300 及び 1,000 mg/kg 体重/日、溶媒:0.5%メチルセルロース水溶液) 投与して、発生毒性試験が実施された。

本試験において、いずれの投与群においても、母動物及び胎児とも検体投与の影響は認められなかったので、無毒性量は本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 1、41)

(3)発生毒性試験(ウサギ)

NZW ウサギ(一群雌 22 匹)の妊娠 $7\sim28$ 日に強制経口(原体:0,25、100、250 及び 500 mg/kg 体重/日、溶媒:0.5%メチルセルロース水溶液)投与して、発生毒性試験が実施された。

500 mg/kg 体重/日投与群の 3 匹(妊娠 $27\sim29$ 日)及び 250 mg/kg 体重/日投与群の 4 匹(妊娠 $22\sim29$ 日)に流産/早産が、100 mg/kg 体重/日投与群の 2 匹に著しい体重増加抑制及び摂餌量減少がみられたため、それぞれ切迫と殺(妊娠 $18\sim29$ 日)された。

母動物において、500 mg/kg 体重/日投与群で被毛の汚れ (妊娠 16 日以降)が、250 mg/kg 体重/日以上投与群で排便及び糞量減少(妊娠 17 日以降)が、100 mg/kg 体重/日以上投与群では下痢(妊娠 10 日以降)、体重増加抑制(妊娠 $7\sim 29$ 日)及び摂餌量減少(妊娠 $7\sim 29$ 日)が認められた。

胎児においては、250 mg/kg 体重/日以上投与群で低体重が認められた。

本試験において、100 mg/kg 体重/日以上投与群の母動物で体重増加抑制、摂 餌量減少等が、250 mg/kg 体重/日以上投与群の胎児で低体重が認められたので、 無毒性量は母動物で 25 mg/kg 体重/日、胎児で 100 mg/kg 体重/日であると考え

^{2): 2,000} ppm 投与群では甲状腺比重量のみ増加。

られた。催奇形性は認められなかった。(参照1、42)

13. 遺伝毒性試験

シアントラニリプロール(原体)の細菌を用いた復帰突然変異試験、ヒト末梢血リンパ球を用いた染色体異常試験、チャイニーズハムスター卵巣由来細胞(CHO)を用いた遺伝子突然変異試験及びマウスを用いた小核試験が実施された。

結果は表 50 に示されているとおり、全て陰性であったことから、シアントラニリプロールに遺伝毒性はないものと考えられた。 (参照 1、43、44、45、64)

	試験	対象	処理濃度・投与量	結果
	復帰突然変異 試験	Salmonella typhimurium (TA98、TA100、 TA1535、TA1537 株) Escherichia coli (WP2 uvrA 株)	50~5,000 μg/プレート (+/-S9)	陰性
in vitro	染色体異常試験	ヒト末梢血リンパ球	①125~800 μg/mL (-S9) 125~600 μg/mL (+S9) (4 時間処理) ②31.3~250 μg/mL (-S9) (20 時間処理)	陰性
	遺伝子突然変異 試験 (<i>Hprt</i> 遺伝子座)	チャイニーズハムスター 卵巣由来細胞 (CHO)	10~1,000 μg/mL(+/-S9)	陰性
in vivo	小核試験	ICR マウス (骨髄細胞) (一群雌雄各 10 匹)	500、1,000 及び 2,000 mg/kg 体重 (単回強制経口投与)	陰性

表 50 遺伝毒性試験概要 (原体)

注) +/-S9: 代謝活性化系存在下及び非存在下

主として植物及び土壌由来の代謝物 E の細菌を用いた復帰突然変異試験、ヒト末梢血リンパ球を用いた染色体異常試験及びチャイニーズハムスター卵巣由来細胞 (CHO) 用いた遺伝子突然変異試験が実施された。

試験結果は表 51 に示されているとおり、全て陰性であった。(参照 1、46、64)

被験物質 試験 対象 処理濃度・投与量 結果 S. typhimurium 50~5,000 (TA98, TA100, ug/プレート(+/-S9) 復帰突然 TA1535、TA1537株) 陰性 変異試験 E. coli (WP2 urvA 株) ヒト末消血リンパ球 $313\sim2,500 \,\mu \text{g/mL}$ (-S9、4 時間処理) 代謝物 E in vitro 染色体異常 $156 \sim 2,500 \, \mu \text{g/mL}$ 陰性 (+S9、4 時間処理) 試験 $156 \sim 2,000 \, \mu \text{g/mL}$ (-S9、20 時間処理) チャイニーズハムスタ $100 \sim 1.500 \, \mu \text{g/mL}$ 遺伝子突然 一卵巢由来細胞 (CHO) (+/-S9)変異試験 陰性 (*Hprt* 遺 伝子座)

表 51 遺伝毒性試験概要(代謝物)

注) +/-S9: 代謝活性化系存在下及び非存在下

14. その他の試験

(1) ラットにおける甲状腺及び副腎に対する影響

SD ラット (一群雄 10 匹及び雌 15 匹) を用いた雄 93 日間及び雌 29 日間の混餌 [原体:0及び 20,000 ppm (平均検体摂取量:雄:1,230 mg/kg 体重/日、雌:1,900 mg/kg 体重/日)] 投与による甲状腺及び副腎機能に及ぼす影響が検討された。

雌ラットを用いた甲状腺に対する検討において、血清中 TSH 濃度は対照群の 167%に増加し、 T_4 濃度は対照群の 70%まで有意に減少したが、 T_3 及び rT_3 濃度 に変化はなかった。F ミクロソーム中の UDP-GT 活性は対照群の 177%に上昇し、5-脱ョード酵素活性は対照群の 77%に低下した。F 臓の絶対及び比重量は増加したほか、甲状腺の絶対及び比重量では増加傾向が認められた。病理組織学的検査の結果、軽微な甲状腺ろ胞上皮細胞肥大が認められた。

検体 93 日間投与雄ラットにおいて、副腎への作用が検討された。ACTH を投与後 1 時間後の血清コルチコステロン上昇において、検体投与の影響はみられなかった。病理組織学的検査により、検体投与群の副腎皮質束状帯に小型空胞の軽微な増加が認められた。電顕による観察でも脂肪空胞の増加が確認されたが、細胞内の超微細構造に検体投与による変化は認められなかった。

以上の結果から、甲状腺系においては、検体投与により肝臓の UDP-GT 活性が増加して T_4 代謝が亢進し、血中 T_4 濃度が低下した結果、下垂体からの TSH 分泌が増加した。これが、甲状腺ろ胞上皮細胞を刺激して肥大が生じたものと考えられた。一方、副腎においては、検体投与により副腎皮質に小型空胞の増加が生じた。これは、糖質コルチコイド合成用の脂質の貯蔵が軽度に亢進された結果

と考えられたが、副腎皮質の構造又は機能への影響は認められなかった。(参照 1、47)

(2) In vitro 甲状腺ペルオキシダーゼ阻害試験

ミニブタ(系統: Yucatan Pig)の甲状腺由来ペルオキシダーゼを調製し、過酸化水素水を基質としたサイログロブリンのヨウ素化を触媒するペルオキシダーゼ活性の測定により、シアントラニリプロールの甲状腺ペルオキシダーゼ活性阻害能の有無が検討された。

検体処理群の最高濃度を測定系への溶解限界 (400 μM) に設定して試験が実施されたが、甲状腺ペルオキシダーゼ活性の阻害は認められなかった。しかし、本試験による甲状腺ペルオキシターゼ活性阻害の検出のためにはヨウ素イオンの存在の問題があるため、本剤による甲状腺への影響をもたらすメカニズムが甲状腺ペルオキシターゼ活性阻害によるものではないとは判断できなかった。(参照 1、48)

(3) マウスにおける副腎に対する影響

ICR マウス (一群雄 10 匹) を用いた 93 日間の混餌 [原体: 0 及び 7,000 ppm (平均検体摂取量: 1,120 mg/kg 体重/日)] 投与による副腎の機能及び微細構造に及ぼす影響について検討した。

検体投与群の尿中コルチコステロン量(総排泄量及びコルチコステロン濃度/クレアチニン濃度比)は対照群と同等であった。副腎の重量及び病理組織学的検査においても検体投与の影響は認められなかった。電子顕微鏡検査の結果、検体投与群における副腎皮質束状帯の細胞質内脂質空胞の大きさ及び数並びにその他の微細構造は対照群と同等であった。また、検体投与に起因した細胞内小器官の変化、細胞傷害又は変性を示す所見も認められなかった。

したがって、90 日間亜急性毒性試験 [10.(4)] において雄マウスの副腎皮質に小型空胞の増加が認められた用量 7,000 ppm (1,120 mg/kg 体重/日)を反復投与しても、検体が雄マウスの副腎皮質細胞の構造及び機能に影響を及ぼすことはないと考えられた。 (参照 1、49)

(4)28 日間免疫毒性試験(ラット)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、20、200、2,000 及び 20,000 ppm: 平均検体摂取量は表 52 参照) 投与による 28 日間免疫毒性試験が実施された。陽性対照群 (一群雌雄各 5 匹) としてはシクロホスファミドー水和物 6 日間腹腔内(25 mg/kg 体重/日)投与群が設定された。

表 52 28 日間免疫毒性試験 (ラット) の平均検体摂取量

投与群		20 ppm	200 ppm	2,000 ppm	20,000 ppm
平均検体摂取量	雄	1.7	17	166	1,700
(mg/kg 体重/日)	雌	1.8	18	172	1,700

検体投与群において sRBC-特異的 IgM レベル (ヒツジ赤血球抗体価) に影響はみられなかった。陽性対照群では、対照群と比較して抗体価の低下が認められた。

脳、胸腺及び脾臓重量に対する影響は認められなかった。 本試験条件下では免疫毒性は認められなかった。(参照 1、50)

(5) 28 日間免疫毒性試験(マウス)

ICR マウス (一群雌雄各 10 匹) を用いた混餌 (原体: 0、20、150、1,000 及び 7,000 ppm: 平均検体摂取量は表 53 参照) 投与による 28 日間免疫毒性試験が実施された。陽性対照群 (一群雌雄各 5 匹) としてはシクロホスファミドー水和物 5 日間腹腔内(25 mg/kg 体重/日)投与群が設定された。

表 53 28 日間免疫毒性試験(マウス)の平均検体摂取量

投与群		20 ppm	150 ppm	$1,000~{ m ppm}$	$7,000~{ m ppm}$
平均検体摂取量	雄	3.0	23	154	1,070
(mg/kg 体重/日)	雌	4.1	32	224	1,390

検体投与群において sRBC-特異的 IgM レベル (ヒツジ赤血球抗体価) に影響はみられなかった。陽性対照群では、対照群と比較して抗体価の低下が認められた。

脳、胸腺及び脾臓重量に対する影響は認められなかった。 本試験条件下では免疫毒性は認められなかった。(参照 1、51)

(6)代謝物解析(ラット、マウス及びイヌ)

90 日間亜急性毒性試験(ラット、マウス及びイヌ) [10.(2),(4) 及び(5)] 及び 1 年間慢性毒性試験(イヌ) [11.(1)] の血漿を採取し、シアントラニリプロール並びに代謝物 B、K、J 及び Q の濃度が測定された。

血漿中のシアントラニリプロール及び代謝物濃度は表 54 に示されている。

ラット及びマウスの血漿中には代謝物 J が最も高く認められ、次いでシアントラニリプロールが認められた。一方でイヌの血漿中ではシアントラニリプロールが最も高く認められた。 (参照 64)

表 54 血漿中のシアントラニリプロール及び代謝物濃度(ng/mL)

	12 (·/N	(十リノ)			- ,,,,	O. 1 (193) 19	7/12/2 (1.6	<u>,,</u>	
DI DO			1.11.		ラット ¹⁾			117.		
性別			雄					雌		
投与群	0 ppm	100 ppm	400 ppm	3,000 ppm	20,000 ppm	0 ppm	100 ppm	400 ppm	3,000 ppm	20,000 ppm
シアント	P P					P P ===				
ラニリプ	$14\!\pm\!4$	$357\pm$	$1,730 \pm$	$3,400 \pm$	$4,630 \pm$	<loq< td=""><td>$1{,}590\!\pm\!$</td><td>$4,250 \pm$</td><td>$6,010\pm$</td><td>$5,620 \pm$</td></loq<>	$1{,}590\!\pm\!$	$4,250 \pm$	$6,010\pm$	$5,620 \pm$
ロール	11-1	64	754	552	761	204	399	1,230	1,720	1,680
代謝物 B	<loq< td=""><td>$173\pm$</td><td>598±</td><td>$1,300 \pm$</td><td>$1,\!460\!\pm\!$</td><td><loq< td=""><td>$710 \pm$</td><td>$1,820 \pm$</td><td>$1,480 \pm$</td><td>$1,310\pm$</td></loq<></td></loq<>	$173\pm$	598±	$1,300 \pm$	$1,\!460\!\pm\!$	<loq< td=""><td>$710 \pm$</td><td>$1,820 \pm$</td><td>$1,480 \pm$</td><td>$1,310\pm$</td></loq<>	$710 \pm$	$1,820 \pm$	$1,480 \pm$	$1,310\pm$
1 (10) 100 12	204	77	195	590	304	204	212	409	408	336
代謝物 K	<loq< td=""><td>$29\!\pm\!15$</td><td>$110\pm$</td><td>$207\pm$</td><td>$455\pm$</td><td><loq< td=""><td>$108\pm$</td><td>$328\pm$</td><td>573±</td><td>$716\pm$</td></loq<></td></loq<>	$29\!\pm\!15$	$110\pm$	$207\pm$	$455\pm$	<loq< td=""><td>$108\pm$</td><td>$328\pm$</td><td>573±</td><td>$716\pm$</td></loq<>	$108\pm$	$328\pm$	573±	$716\pm$
1 (193179) 13	чьоч.	25 = 10	26	70	102	LOQ	16	83	159	216
		16,300	67,500	91,600	146,000		29,200	175,000	257,000	260,000
代謝物 J	<loq< td=""><td>±</td><td>土</td><td>土</td><td>土</td><td>$32\!\pm\!26$</td><td>\pm</td><td>土</td><td>土</td><td>土</td></loq<>	±	土	土	土	$32\!\pm\!26$	\pm	土	土	土
		5,760	13,200	21,906	30,100		6,460	40,800	44,700	54,100
/₽割+#m ○	<i 00<="" td=""><td>16+4</td><td>91 + 0</td><td>25 + 20</td><td>50+05</td><td><i 00<="" td=""><td>~I 00</td><td>70±17</td><td>137±</td><td>164±</td></i></td></i>	16+4	91 + 0	25 + 20	50+05	<i 00<="" td=""><td>~I 00</td><td>70±17</td><td>137±</td><td>164±</td></i>	~I 00	70±17	137±	164±
代謝物 Q	<loq< td=""><td>16 ± 4</td><td>21 ± 9</td><td>35 ± 20</td><td>$50\!\pm\!25$</td><td><loq< td=""><td><loq< td=""><td>70 ± 17</td><td>33</td><td>35</td></loq<></td></loq<></td></loq<>	16 ± 4	21 ± 9	35 ± 20	$50\!\pm\!25$	<loq< td=""><td><loq< td=""><td>70 ± 17</td><td>33</td><td>35</td></loq<></td></loq<>	<loq< td=""><td>70 ± 17</td><td>33</td><td>35</td></loq<>	70 ± 17	33	35
					マウス 2)					
性別			雄					雌		
北片野	0	50	300	1,000	7,000	0	50	300	1,000	7,000
投与群	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
シアント			815±	$1,450\pm$	$3,940 \pm$		$140 \pm$	1,000±	$2,630 \pm$	8,980±
ラニリプ	<loq< td=""><td>85 ± 33</td><td>$\frac{313\pm}{270}$</td><td>321</td><td>1,050</td><td><loq< td=""><td>108</td><td>230</td><td>1,070</td><td>9,860</td></loq<></td></loq<>	85 ± 33	$\frac{313\pm}{270}$	321	1,050	<loq< td=""><td>108</td><td>230</td><td>1,070</td><td>9,860</td></loq<>	108	230	1,070	9,860
ロール			210	521	1,000		100	250	1,070	3,000
代謝物 B	<loq< td=""><td><loq< td=""><td>64 ± 18</td><td>118±</td><td>$278\pm$</td><td><loq< td=""><td><loq< td=""><td>63 ± 24</td><td>$182\pm$</td><td>$312\pm$</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>64 ± 18</td><td>118±</td><td>$278\pm$</td><td><loq< td=""><td><loq< td=""><td>63 ± 24</td><td>$182\pm$</td><td>$312\pm$</td></loq<></td></loq<></td></loq<>	64 ± 18	118±	$278\pm$	<loq< td=""><td><loq< td=""><td>63 ± 24</td><td>$182\pm$</td><td>$312\pm$</td></loq<></td></loq<>	<loq< td=""><td>63 ± 24</td><td>$182\pm$</td><td>$312\pm$</td></loq<>	63 ± 24	$182\pm$	$312\pm$
(図) 70/ D	\r\Q	\L\Q	04-10	17	45	\r\0\d	\r\0\d	00 ± 24	77	73
/平部+hm TZ	<i 00<="" td=""><td>26+4</td><td>$179\pm$</td><td>308±</td><td>$839\pm$</td><td><loq< td=""><td>26+16</td><td>$132\pm$</td><td>$334\pm$</td><td>$769\pm$</td></loq<></td></i>	26+4	$179\pm$	308±	$839\pm$	<loq< td=""><td>26+16</td><td>$132\pm$</td><td>$334\pm$</td><td>$769\pm$</td></loq<>	26+16	$132\pm$	$334\pm$	$769\pm$
代謝物 K	<loq< td=""><td>26 ± 4</td><td>29</td><td>75</td><td>197</td><td>\r\0\d</td><td>36 ± 16</td><td>25</td><td>113</td><td>147</td></loq<>	26 ± 4	29	75	197	\r\0\d	36 ± 16	25	113	147
	$241\pm$	112,000	394,000	403,000	411,000	$350\pm$	153,000	321,000	503,000	385,000
代謝物 J	76	±	土	土	土	350± 87	\pm	土	土	±
	10	11,400	27,900	33,300	34,900	01	16,200	33,600	30,100	108,000
代謝物 Q	<loq< td=""><td><loq< td=""><td>68±14</td><td>$121 \pm$</td><td>$262\pm$</td><td><loq< td=""><td><loq< td=""><td>59 ± 10</td><td>$146\pm$</td><td>$331\pm$</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>68±14</td><td>$121 \pm$</td><td>$262\pm$</td><td><loq< td=""><td><loq< td=""><td>59 ± 10</td><td>$146\pm$</td><td>$331\pm$</td></loq<></td></loq<></td></loq<>	68±14	$121 \pm$	$262\pm$	<loq< td=""><td><loq< td=""><td>59 ± 10</td><td>$146\pm$</td><td>$331\pm$</td></loq<></td></loq<>	<loq< td=""><td>59 ± 10</td><td>$146\pm$</td><td>$331\pm$</td></loq<>	59 ± 10	$146\pm$	$331\pm$
1 (1911 780 (q)	\r\Q	~LOQ	00-14	29	51	\r\0\d	~LOQ	09±10	39	26
					イヌ ³⁾					
性別			雄	T				雌	1	1
投与群		30	100	1,000	10,000		30	100	1,000	10,000
3人一才和十		ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm
シアント		$1,740\pm$	16,800	31,000	51,900		$2,\!420\pm$	20,600	28,400	51,300
ラニリプ		$1,740 \pm 1,110$	$\pm 6,050$		·			土	土	土
ロール		1,110		$\pm 6,990$	±6,600		1,090	10,800	18,100	26,900
件軸+hh D	181±		562± 1,490±		$2,\!670\!\pm\!$		06+00	$661\pm$	1,180±	$2,040\pm$
代謝物 B	61 185		97	1,210		96±28	491	565	488	
/	256+ 718+ 871		8,710±	18,700			$1,020 \pm$	1,770±	$4,050 \pm$	
代謝物 K	93 159 2,250		$\pm 7,\!880$		77 ± 23	1,120	1,070	895		
/ _ ⇒ 6 ⊥ # <i>L</i> . ▼	21		$217\pm$	$359\pm$		-I 00	105±	158±	567±	
4-1-1 ⇒ H.T. /17771	32 ± 7 83 ± 8		83±82	1			<loq< td=""><td>1</td><td>I</td><td>I</td></loq<>	1	I	I
代謝物 J				56	183			93	87	255

		154	427	$\pm 8,\!500$	8,570			1,400	1,990	1,980
					イヌ 4)					
性別			雄					雌		
投与群	0 ppm	5,000 ppm	5,000 ppm+ 回復期 間			0 ppm	5,000 ppm	5,000 ppm+ 回復期 間		
シアント ラニリプ ロール	<loq< td=""><td>62,200</td><td>19.7</td><td></td><td></td><td><loq< td=""><td>565</td><td>10.8</td><td></td><td></td></loq<></td></loq<>	62,200	19.7			<loq< td=""><td>565</td><td>10.8</td><td></td><td></td></loq<>	565	10.8		

<LOQ:定量限界 (5 ng/mL) 未満 /:なし

1):90日間亜急性毒性試験(ラット) [10.(2)] における投与60日の試料
 2):90日間亜急性毒性試験(マウス) [10.(4)] における投与60日の試料
 3):90日間亜急性毒性試験(イヌ) [10.(5)] における試料(採取時期不明)

 $^{4)}$: 1年間慢性毒性試験(イヌ) [11. (1)] における投与 39 週の試料

Ⅲ. 食品健康影響評価

参照に挙げた資料を用いて、農薬「シアントラニリプロール」の食品健康影響評価を実施した。

 14 C で標識したシアントラニリプロールのラットを用いた動物体内運命試験の結果、経口投与後の吸収率は低用量で $62.6\% \sim 80.4\%$ 、高用量で $31.4\% \sim 40.0\%$ であった。放射能は投与後体内の広範囲に分布した後速やかに消失し、特定の組織への蓄積性は認められなかった。排泄は投与後 48 時間でほぼ完了し、主に糞中に排泄された。総排泄量の約 $10.0\% \sim 36.5\%$ は胆汁を経由した糞中排泄であった。糞中では未変化のシアントラニリプロールが最も高い割合を占め、尿中の主な代謝物として水酸化体である K 及び Q が認められた。

 14 C で標識したシアントラニリプロールの畜産動物(泌乳ヤギ及び産卵鶏)を用いた動物体内運命試験の結果、泌乳ヤギにおいて投与放射能の大部分は糞中に排泄され、肝臓、胆汁及び腎臓中の残留は僅かであった。乳汁中放射能は $0.080\sim0.147$ $\mu g/g$ 認められ、反復投与による蓄積性はみられなかった。乳汁及び組織中の主な代謝物は B、K 及び Q であり、それぞれ最大で 55.6% TRR、32.8% TRR 及び 11.8% TRR 認められた。産卵鶏の卵及び組織中の残留放射能は 1% TAR 未満であり、排泄物及び卵白中には未変化のシアントラニリプロールの割合が最も高く、卵白及び卵黄中の主な代謝物として J、B 及び D が認められ、それぞれ最大で 18.7% TRR、29.2% TRR 及び 12.0% TRR であった。

 14 C で標識したシアントラニリプロールの植物体内運命試験の結果、葉面散布後の残留放射能の大部分は植物体表面にとどまり、土壌処理では茎葉部から回収された放射能は僅かであった。主な残留成分は未変化のシアントラニリプロールであり、 $^{10\%}$ TRR を超えて検出された代謝物は B、O 及び S であった。いずれの植物においても可食部への移行は僅かであった。

国内におけるシアントラニリプロール並びに代謝物 B 及び O を分析対象化合物とした水稲、野菜等の作物残留試験の結果、シアントラニリプロール並びに代謝物 B 及び O の最大残留値は、いずれも荒茶における 20.7~mg/kg(シアントラニリプロール)、0.780~mg/kg(代謝物 B)及び 1.43~mg/kg(代謝物 O)であった。海外におけるシアントラニリプロールを分析対象化合物とした野菜、果樹等の作物残留試験の結果、シアントラニリプロールの最大残留値は、からしな (茎葉) の 20~mg/kgであった。

シアントラニリプロール並びに代謝物 B、C、E、G 及び O を分析対象化合物とした野菜及び小麦における後作物残留試験の結果、シアントラニリプロール及び各代謝物は、いずれの後作物においても検出限界($0.01 \, \mathrm{mg/kg}$)未満であった。

シアントラニリプロール並びに代謝物 B、C、D、I、J、K 及び Q を分析対象化合物とした泌乳牛及び産卵鶏の畜産物残留試験の結果、シアントラニリプロールの最大残留値は、泌乳牛では肝臓の $2.1~\mu g/g$ 、産卵鶏では全卵の $0.80~\mu g/g$ であった。各代謝物の最大残留値は、代謝物 B で $0.45~\mu g/g$ (泌乳牛の脂肪)、C で $0.011~\mu g/g$

(泌乳牛及び産卵鶏の肝臓)、D で $0.083~\mu g/g$ (産卵鶏の肝臓)、J で $0.57~\mu g/g$ (泌乳牛の肝臓)、K で $0.32~\mu g/g$ (産卵鶏の肝臓)、Q で $0.28~\mu g/g$ (乳汁)であった。代謝物 I は全ての試料で定量限界($0.01~\mu g/g$)未満であった。

各種毒性試験結果から、シアントラニリプロール投与による影響は、主に体重(増加抑制)、血液生化学(ALP増加:イヌ)、肝臓(変異肝細胞巣、小葉中心性肝細胞肥大等)、胆嚢(粘膜上皮過形成:イヌ)、動脈(動脈炎:イヌ)及び甲状腺(重量増加及びろ胞上皮細胞肥大)に認められた。神経毒性、発がん性、繁殖能に対する影響、催奇形性、免疫毒性及び遺伝毒性は認められなかった。

植物体内運命試験において可食部又は家畜の飼料として利用される部位で代謝物 B が、畜産動物を用いた動物体内運命試験において代謝物 B、D、J、K 及び Q が 10%TRR を超えて認められたが、いずれの代謝物もラットにおいて認められたことから、農産物及び畜産物中の暴露評価対象物質をシアントラニリプロール(親化合物のみ)と設定した。

各試験における無毒性量等は表53に示されている。

各試験で得られた無毒性量のうち最小値は、イヌを用いた1年間慢性毒性試験の0.96 mg/kg 体重/日であったことから、食品安全委員会は、これを根拠として安全係数100で除した0.0096 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

また、シアントラニリプロールの単回経口投与等により生ずる可能性のある毒性 影響は認められなかったため、急性参照用量(ARfD)は設定する必要がないと判 断した。

ADI 0.0096 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌

(無毒性量) 0.96 mg/kg 体重/日

(安全係数) 100

ARfD 設定の必要なし

<参考>

<JMPR、2013年>

ADI 0.03 mg/kg 体重/日

(ADI 設定根拠資料) 亜急性毒性試験及び慢性毒性試験

(動物種) イヌ

(期間) 90日間及び1年間

(投与方法) 混餌投与

(無毒性量) 3.08 mg/kg 体重/日

(安全係数) 100

ARfD 設定の必要なし

<米国、2013年>

cRfD 0.01 mg/kg 体重/日

(cRfD 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌投与

(無毒性量) 1 mg/kg 体重/日

(不確実係数) 100

aRfD 設定の必要なし

<EFSA、2014年>

ADI 0.01 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌投与

(最小毒性量) 1 mg/kg 体重/日

(安全係数) 100

ARfD 設定の必要なし

<豪州、2013年>

ADI 0.01 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌投与

(無影響量) 1 mg/kg 体重/日

(安全係数) 100

ARfD 設定の必要なし

(参照 61、64、67、68)

表 53 各試験における無毒性量等

			何まは日	1	
動物種	試験	投与量 (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考 1)
ラット	28 日間 亜急性 毒性試験	0、600、2000、 6,000、20,000 ppm 雄:0、53、175、 528、1,780 雌:0、62、188、 595、1,950	雄:53 雌:62	雄:175 雌:188	雌雄:小葉中心性肝 細胞肥大等
	90 日間 亜急性 毒性試験	0、100、400、 3,000、20,000 ppm 雄:0、5.7、22.4、 168、1,150 雌:0、6.9、26.6、 202、1,350	雄:5.7 雌:6.9	雄:22.4 雌:26.6	雄:T3及びT4減少 雌:甲状腺ろ胞細胞 肥大等
	90 日間 亜急性 神経毒性 試験	0、200、2,000、 20,000 ppm 雄:0、11.4、116、 1,190 雌:0、14.0、137、 1,400	雄:1,190 雌:1,400	姓: — 此: —	雌雄:毒性所見なし (亜急性神経毒性 は認められない)
	2年間 慢性毒性/ 発がん性 併合試験	0、20、200、2,000、 20,000 ppm 雄:0、0.8、8.3、 84.8、907 雌:0、1.1、10.5、 107、1,160	雄:8.3 雌:10.5	雄:84.8 雌:107	雄:変異肝細胞巣等 雌:小葉中心性肝細 胞肥大等 (発がん性は認め られない)
	2世代繁殖試験	0、20、200、2,000、 20,000 ppm P雄: 0、1.1、11.0、 111、1,130 P雌: 0、1.4、13.9、 136、1,340 F ₁ 雄: 0、1.4、14.6、 151、1,580 F ₁ 雌: 0、1.9、20.1、 203、2,130	親動物 P雄:11.0 P雌:1.4 F1雄:14.6 F1雌:1.9 児動物 P雄:11.0 P雌:13.9 F1雄:14.6 F1雌:20.1	親動物 P雄:111 P雌:13.9 F ₁ 雄:151 F ₁ 雌:20.1 児動物 P雄:111 P雌:136 F ₁ 雄:151 F ₁ 雌:203	親動物 雄:小葉中心性肝細 胞肥大等 雌:甲状腺絶対及び 比重量増加等 児動物 雌雄:胸腺絶対重量 及び対脳重量比減 少等 (繁殖能に対する 影響は認められない)
	発生毒性 試験	0、20、100、300、 1,000	母動物:1,000 胎 児:1,000	母動物:- 胎 児:-	母動物及び胎児:毒性所見なし (催奇形性は認められない)
マウス	28 日間 亜急性 毒性試験	0、300、1,000、 3,000、7,000 ppm 雄:0、53、175、	雄:175 雌:212	雄:528 雌:664	雌雄:肝絶対重量、 比重量及び対脳重 量比増加

動物種	試験	投与量	無毒性量	最小毒性量	備考 1)
野月7月1年	时间失	(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)	加布
		528、1,260			
		雌:0、63、212、			
		664、1,480			
	90 日間	0,50,300,1,000,	雄:150	雄:1,090	雄:小葉中心性肝細
	亜急性	7,000 ppm	雌:204	雌:1,340	胞肥大
	毒性試験	雄:0、7.2、47.1、			雌:小葉中心性肝細
	(用量設	150、1,090			胞肥大、肝細胞壊死
	定試験)	雌:0、9.7、58.1、			
	AL IP-VIIIA)	204、1,340			
		0,20,150,1,000,	雄:15.5	雄:104	雌雄:肝重量増加及
	18 か月間	7,000 ppm	雌:18.6	雌:131	び小葉中心性肝細
	発がん性	雄:0、2.0、15.5、			胞肥大
	試験	104、769			(発がん性は認め
		雌:0、2.4、18.6、			られない)
J. 11 18		131, 904	日本山山 0章		日本1世 - 世本1光上16
ウサギ		0,25,100,250,	母動物:25	母動物:100	母動物:体重増加抑
	発生毒性	500	胎 児:100	胎 児:250	制、摂餌量減少等
	試験				胎児:低体重
					(催奇形性は認め
イヌ		0,30,100, 1,000,	雄:3.08	雄:31.9	られない) 雌雄 : TP 及び Alb
		10,000 ppm	雌:3.48	雌:34.3	
	90 日間	雄: 0.98、3.08、	典: 3.40	吨: 34.3	例少等
	亜急性	31.9、281			
	毒性試験	雌: 0.97、3.48、			
		34.3、294			
		0,40,200,1,000,	雄: 0.96	雄:5.67	雄:ALP 増加等
		5,000 ppm	雌:6.00	雌:27.1	雌: ALP 及び ALT
	1年間	雄: 0.96、5.67、	Par . 0.00	PAR . 71.1	増加等
	慢性毒性	27.0、144			. H\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	試験	雌:1.12、6.00、			
		27.1, 133			
			NOAEL : 0.96	<u> </u>	
	ADI		SF: 100		
			ADI : 0.0096		
	ADI 設定根		イヌ1年間慢性		

ADI: 一日摂取許容量 SF: 安全係数 NOAEL: 無毒性量 -: 最小毒性量が設定できなかった。

1): 備考欄には最小毒性量で認められた主な毒性所見等を記した。

<別紙1:代謝物/分解物略称>

記号	略称	化学名
A	ビスヒドロキシシ アントラニリプロ ール	3 -ブロモ-1-(3 -クロロピリジン- 2 -イル)- N { 4 -シアノ- 2 -(ヒドロキシメチル)- 6 -[(ヒドロキシメチル)カルバモイル]フェニル}- $1H$ -ピラゾール- 5 -カルボキサミド
В	J9Z38	2-[3-ブロモ-1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-3,8-ジメチル-4-オキソ-3,4-ジヒドロキナゾリン-6-カルボニトリル
С	JCZ38	4 -($\{[3$ -ブロモ-1-(3 -クロロピリジン- 2 -イル)-1 H ピラゾール- 5 -イル]カルボニル $\}$ アミノ $)$ - N 3, 5 -ジメチルイソフタルアミド
D	HGW87	3-ブロモ $-N$ -(2-カルバモイル-4-シアノ-6-メチルフェニル)-1-(3-クロロピリジン-2-イル)-1 H -ピラゾール-5-カルボキサミド
Е	JSE76	4 -($\{[3$ -ブロモ-1-(3 -クロロピリジン-2-イル)-1 H -ピラゾール-5-イル]カルボニル $\}$ アミノ $\}$ - 3 -メチル-5-(メチルカルバモイル)ベンゾイックアシド
F	K5A77	2-[3-ブロモ-1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-3,8-ジメチル-4-オキソ-3,4-ジヒドロキナゾリン-6-カルボキサミド
G	K5A78	2-[3-ブロモ-1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-3,8-ジメチル-4-オキソ-3,4-ジヒドロキナゾリン-6-カルボン酸
Н	K5A79	$4-(\{[3- $
I	K7H19	4 -($\{[3$ -ブロモ-1-(3 -クロロピリジン-2-イル)-1 H -ピラゾール-5-イル]カルボニル $\}$ アミノ $\}$ -5-メチルイソフタルアミド
J	MLA84	2-[3-ブロモ·1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-8-メチル-4-オキソ-3,4-ジヒドロキナゾリン-6-カルボニトリル
J'	MLA84 カルボン 酸	2-[3-ブロモ-1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-6-シアノ-4-オキソ-3,4-ジヒドロキナゾリン-8-カルボン酸
hJ	ヒドロキシ MLA84	2-[3-ブロモ-1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-8-(ヒドロキシメチル)-4-オキソ-3, 4 -ジヒドロキナゾリン- 6 -カルボニトリル
gJ	ヒドロキシ MLA84 グルコ シド	2-[3-ブロモ-1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-8-[(b-D-グルコピラノースイルオキシ)メチル]-4-オキソ-3, 4 -ジヒドロキナゾリン- 6 -カルボニトリル
${ m grJ}$	ヒドロキシ MLA84 グルクロ ニド	${2-[3-プロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-イル]-6-シアノ-4-オキソ-3,4-ジヒドロキナゾリン-8-イル}メチルb-D-o-ヘキソピラノシドウロン酸$
K	MYX98	3-ブロモ- 1 - $(3$ -クロロピリジン- 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
L	NBC94	2-[3-ブロモ-1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-8-(ヒドロキシメチル)-3-メチル-4-オキソ-3, 4 -ジヒドロキナゾリン- 6 -カルボニトリル
${ m grL}$	NBC94 グルクロ ニド	[2-[3-ブロモ-1-(3-クロロ-2-ピリジニル)-1H-ピラゾール-5-イル]-6-シアノ-3,4-ジヒドロ-3-メチル-4-オキソ-8-キナゾリニル]メチル B-D-グルコピラノシドウロン酸
M	DBC80	3-ブロモ-1-(3-クロロピリジン-2-イル)-1 <i>H</i> -ピラゾール-5-カルボン 酸

N	NXX69	2-{[(4Z)-2-ブロモ-4 H ピラゾール o[1,5-d]ピリド[3,2-b][1,4]オキサジン-4-イルインデン]アミノ}-5-シアノ- N ,3-ジメチルベンズアミド
О	NXX70	2-[3-ブロモ-1-(3-ヒドロキシピリジン-2-イル)-1 H -ピラゾール-5-イル]-3,8-ジメチル-4-オキソ-3,4-ジヒドロキナゾリン-6-カルボニトリル
Q	N7B69	3-ブロモ- 1 - $(3$ -クロロピリジン- 2 -イル $)$ - N - $[4$ -シアノ- 2 - $(ヒドロキシメチル)-6-(メチルカルバモイル)フェニル]-1H-ピラゾール-5-カルボキサミド$
grQ	N7B69グルクロニ ド	3-ブロモ-1-(3-クロロピリジン-2-イル)- N [4-シアノ-2-(ヒドロキシメチル)-6-(メチルカルバモイル)フェニル]-1 H ピラゾール-6-メチル β-D-O-ヘキソピラノシドウロン酸
R	PLT97	2-[3-ブロモ-1-(3-クロロピリジン-2-イル)-1 H ピラゾール-5-イル]-8-メチル-4-オキソ-3, 4 -ジヒドロキナゾリン- 6 -カルボン酸
S	QKV54	2-(3-ブロモ-1 H ピラゾール-5-イル)-3,8-ジメチル-4-オキソ-3,4-ジヒドロキナゾリン-6-カルボニトリル
Т	QKV55	3-ブロモ- N [4-シアノ-2-メチル-6-(メチルカルバモイル)フェニル]-1-(3-ヒドロキシピリジン-2-イル)-1 H ピラゾール-5-カルボキサミド

<別紙2:検査値等略称>

略称	<u>国担守昭你</u> 名称
ACTH	副腎皮質刺激ホルモン
ai	有効成分量
Alb	アルブミン
ALT	アラニンアミノトランスフェラーゼ [=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)]
ALP	アルカリホスファターゼ
AST	アスパラギン酸アミノトランスフェラーゼ [=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)]
AUC	薬物濃度曲線下面積
Chol	コレステロール
C_{max}	最高濃度
CYP	チトクローム P450 アイソザイム
ELISA	酵素免疫測定法
Glu	グルコース (血糖)
GGT	γ-グルタミルトランスフェラーゼ [=γ-グルタミルトランスペプチターゼ(γ-GTP)]
Hb	ヘモグロビン (血色素量)
Ht	ヘマトクリット値
Ig	免疫グロブリン
$ m LC_{50}$	半数致死濃度
$ m LD_{50}$	半数致死量
P450	チトクローム P450
PHI	最終使用から収穫までの日数
RBC	赤血球数
SDH	ソルビトール脱水素酵素
$T_{1/2}$	消失半減期
T_3	トリヨードサイロニン
T_4	サイロキシン
TAR	総投与(処理)放射能
TG	トリグリセリド
T_{\max}	最高濃度到達時間
TP	総蛋白質
TSH	甲状腺刺激ホルモン
TRR	総残留放射能
UDP-GT	ウリジン二リン酸グルクロノシルトランスフェラーゼ

<別紙3:作物残留試驗成績(国内)>

		l							Ī	<u> </u>	<u> </u>	
		<u>†</u> <□		<0.04	<0.04	<0.04	<0.04	<0.04 <0.04 <0.04	<0.04 <0.04 <0.04			
		0 0	平均值	<0.011	<0.011	<0.011	<0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			
		代謝物 0	最高値	<0.011	<0.011	<0.011	<0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			
	社内分析機関	物 B	平均值	<0.011	<0.011	<0.011	<0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			
	社	代謝物 B	最高値	<0.011	<0.011	<0.011	<0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			
		・ラニリ ール	平均值	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			
(mg/kg)		シアントラニリプロール	最高値	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			
残留值(4-	•	<0.04	<0.04	<0.04	<0.04	<0.04 <0.04 <0.04	<0.04 <0.04 <0.04			
		物 0	平均值	<0.011	<0.011	<0.011	<0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			
		代謝物 0	最高値	<0.011	<0.011	<0.011	<0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			
	公的分析機関	物 B	平均值	<0.011	<0.011	<0.011	<0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			
	公	代謝物 B	最高値	<0.011	<0.011	<0.011	<0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			
		ントラニリ プロール	平均值	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01
		シアントラニリプロール	最高値	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01
	DIII	ГН. (П)		133	125	133	125	6 13 20	7 14 21	1 3	1 3	1 3
	□	回後回		1	1	1	1	ç	င	8	င	3
	年田日	使用重 (g ai/ha)		0.3756	g ai/箱	$0.375^{\rm G}$	g ai/箱	77 9SC		103 ^{SC§}	92.2 ^{sc} §	103 ^{SC§}
紅	盤	引場	数	1	1	1	1	1	П	1	-	1
4 74-71	作物名(非拉形部)	(秋न乃縣)[分析部位]中松丘	夫加干皮	水稲(露地)	[玄米] 平成 22 年	水稻 (露地)	[稲わら] 平成 22 年	(軽額)	[乾燥子実] 平成 21 年	未成熟とう	8 (露地) (生食用	丁美] 平成 25 年

					$\overline{}$								1									.1									
	<u>√</u> □															0.04	<0.04	<0.04	<0.04	<0.04	<a #"="" href="https://www.new.new.new.new.new.new.new.new.new.</td><td>3.84</td><td>3.94</td><td>0.62</td><td>0.23</td><td>0.63</td><td>0.34</td><td>0.21</td><td></td><td>\</td><td></td></tr><tr><td></td><td>代謝物 0</td><td>平均值</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>110.07</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td>0.032</td><td>0.054</td><td>0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td></td><td>\</td><td></td></tr><tr><td>line.</td><td></td><td>最高値</td><td></td><td></td><td></td><td>\</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td>0.032</td><td>0.054</td><td>0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td></td><td>\</td><td></td></tr><tr><td>社内分析機関</td><td>代謝物 B</td><td>平均值</td><td></td><td></td><td></td><td>\</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td>0.042</td><td>0.042</td><td>0.011</td><td><0.011</td><td>0.021</td><td>0.051</td><td>0.021</td><td></td><td>\</td><td></td></tr><tr><td></td><td>代謝</td><td>最高値</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td>0.042</td><td>0.042</td><td>0.011</td><td><0.011</td><td>0.021</td><td>0.051</td><td>0.021</td><td></td><td>\</td><td></td></tr><tr><td></td><td>シアントラニリ
プロール</td><td>平均值</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><u> </u></td><td>3.76</td><td>3.84</td><td>09.0</td><td>0.21</td><td>09.0</td><td>0.93</td><td>0.18</td><td></td><td>\</td><td></td></tr><tr><td>(mg/kg)</td><td>ジンント</td><td>最高値</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01
<0.01</td><td>3.81</td><td>3.97</td><td>0.60</td><td>0.21</td><td>0.61</td><td>0.03</td><td>0.18</td><td></td><td>\</td><td></td></tr><tr><td>残留値 (</td><td>40</td><td></td><td></td><td></td><td></td><td>\</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>700</td><td>0.04</td><td><0.05</td><td><0.04</td><td><0.04</td><td><0.04</td><td><a>0.04</td><td>5.02</td><td>5.20</td><td>0.45</td><td>0.32</td><td>0.69</td><td>0.17</td><td>0.14</td><td>0.05</td><td>< 0.05</p></td><td><0.05</td></tr><tr><td></td><td>代謝物 0</td><td>平均值</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.02</td><td><0.05</td><td><0.02</td></tr><tr><td></td><td></td><td>最高値</td><td></td><td></td><td></td><td>\</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11000</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.02</td><td><0.02</td><td><0.02
<0.02</td></tr><tr><td>公的分析機関</td><td>物B</td><td>平均值</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td>0.031</td><td>0.031</td><td><0.011</td><td><0.011</td><td>0.021</td><td>0.021</td><td>0.011</td><td><0.02</td><td><0.05</td><td><0.02</td></tr><tr><td></td><td>代謝物</td><td>最高値</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td><0.011</td><td>0.031</td><td>0.031</td><td><0.011</td><td><0.011</td><td>0.021</td><td>0.021</td><td>0.011</td><td><0.02</td><td><0.02
0.02</td><td><0.02</td></tr><tr><td></td><td>アントラニリプロール</td><td>平均值</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01
<0.01</td><td><0.01
<0.01</td><td><0.01</td><td><0.01</td><td><0.01
<0.01</td><td><0.01</td><td><0.01</td><td>V0.01</td><td>0.02</td><td><0.0></td><td><0.01</td><td><0.01</td><td><0.01</td><td>\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\</td><td>4.98</td><td>5.16</td><td>0.43</td><td>0.30</td><td>0.66</td><td>0.74</td><td>0.12</td><td>0.01</td><td>	<0.01									
	シアントラニ	最高値	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01	<0.01	<0.01	40.01	0.02	<0.01	<0.01	<0.01	<0.01	<pre></pre> <pre><pre></pre> <pre></pre> <</pre>	4.98	5.19	0.43	0.31	0.66	0.74	0.12	0.01	<0.01	<0.01
	PHI (H)		7 4	21	7 7	21	7	$\begin{array}{c} 14 \\ 21 \end{array}$	7	$\overline{21}$	2	$\begin{array}{c} 14 \\ 21 \end{array}$	7	14	21	⊣ cc	7	14	Π	က၊	<u>- 7</u>	-	က	_	14	- 3	o 1-	14	1	1 က	14
П	[6	>	c:)	c	က	3	1	(က		က		(က			cc)		ଫ	י			က			1+3	
1 1	使用量 (g ai/ha)		109sc	1	9180	1	80800	80s08	95scs		71.6^{SC}		74.4~	$75.4^{ m sc}$		0	155^{sc}			1998C) 		155SC	707			$129^{ m sc}$		3000) }	$106^{ m sc}$
紅盤	新引ぶ	羧	,	4	-	1	,	-	1		,	_		_	1	,	-			_	I		-	7			1			П	
作物名	(栽培形態)[分析部位]	夫टि	まかいしょ	(露地)	[塊基]	平成 24 年	まりかな	(露地)	[塊根]	平成 24 年	すいのまみ	(露地)	[塊根]	平成 24 年	- 1 2 -		だいこん	(露地)	「林寺郎」	下に 世上 水野 21 年	- 1 1 2 -		~ * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S J , A J /	(露地)	[葉部]	平成21年) (4)	たいこん	(露地)

_																-												
		₹ □			\	\		\			\		0.24	0.06	0.09		0.36	0.32	0.16	0.07		\	\	/		\	\	\
		代謝物 0	本均值		\	\		\	\		\		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011	<0.011		\	\			\	\	<u> </u>
	III.07	代謝	最高値		\			\			\		<0.011	<0.011	<0.011 <0.011		<0.011	<0.011	<0.011	<0.011		\	\			\	\	
	社内分析機関	代謝物 B	平均值		\			\			\		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011	<0.011		\	\			\	\	\
	社	保謝	最高値		\			\			\		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011	<0.011		\	\			\	\	\
		ントラニリ プロール	平均值		\			\			\		0.22	0.04	$0.07 \\ 0.02$		0.34	0.30	0.14	c0.0		\	\			\	\	\
(mg/kg)		ジアントラニリ リニラインアン	最高値		\			\			\		0.22	0.04	$0.07 \\ 0.02$		0.34	0.30	0.14	0.05		\	\			\	\	
残留值 (mg/kg)		合計		0.05	<0.05	<0.05	1.82	1.08	$0.30 \\ 0.18$	3.65	1.22	$0.78 \\ 0.32$	0.32	0.12	0.08		0.32	0.23	0.24	0.16	0.54	0.84	0.49	0.20	0.27	0.18	0.10	0.05
		代謝物 0	平均值	20.0>	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02 <0.02	<0.02	<0.02	<0.02 <0.02	<0.011	<0.011	<0.011 <0.011		<0.011	<0.011	<0.011	<0.011	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
		代謝	最高値	20°0>	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02 <0.02	<0.02	<0.02	<0.02 <0.02	<0.011	<0.011	<0.011 <0.011		<0.011	<0.011	<0.011	<0.011	<0.02	<0.02	<0.02	<0.02	20.0>	<0.02	<0.02	<0.02
	公的分析機関	物B	本均值	20°0>	<0.02 <0.02	<0.02	0.02	0.02	$0.02 \\ 0.02$	0.05	0.04	$0.05 \\ 0.02$	<0.011	<0.011	<0.011 <0.011		<0.011	<0.011	<0.011	<0.011	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	公	代謝物	最高値	20°0>	<0.02 <0.02	<0.02	0.02	0.02	$0.02 \\ 0.02$	0.05	0.04	$0.05 \\ 0.02$	<0.011	<0.011	<0.011 <0.011		<0.011	<0.011	<0.011	<0.011	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
		ントラニリ プロール	平均値	0.01	<0.01 <0.01	<0.01	1.78	1.04	$0.26 \\ 0.14$	3.58	1.16	$\begin{array}{c} 0.71 \\ 0.28 \end{array}$	0:30	0.10	0.06 0.03		0.30	0.21	0.22	0.14	0.50	08.0	0.45	0.16	0.23	0.14	0.06	0.01
		ジアントラニリ リニラインアン	最高値	0.01	<0.01	<0.01	1.81	1.05	$0.26 \\ 0.14$	3.74	1.18	$\begin{array}{c} 0.71 \\ 0.28 \end{array}$	0:30	0.10	0.08		0.30	0.22	0.22	0.14	0.50	0.81	0.45	0.16	0.23	0.15	0.06	0.01
	рит	ГП (П)		1 6	o _	14	1	1 က	, 14	1	ကေ၊	7	1	ကျ	. 41		-	က	<u>, </u>	14	1	က	7	14	1	က	7	14
	□	(回 蘇			1+3			1+3			1+3)		1+3				1+3	2 -			1+3	ဂ - T			1+3	2 -	
	出田田	医加里 (g ai/ha)		5008	+ 1	ogeeI	3006	3+	$106^{ m sc}$	300g	} +	$155^{ m sc}$		087860	0.234 g ai/セル	ゲ <u>ン</u> ゲ	103 2	$155^{ m sc}$			0.016/煤	10:0	199SC	120-1	料/5100	¥, 10.0 -	1 29SC	701
紅	纝	ほ場	数		1			1			-	1		1				-	-			-	+			-	-	
14-44-71	作物名(無校財館)	(松石/尼恩) [分析部位] 宝蛤在庫	大量十萬	[根部]	平成24年			だいこん	(露地)	[集部]	下击27年	+73/1	いちくお	(露地)		平成 21 年	いなくない	(露知)	茶	平成 22 年		ハイヤンナ		(露地)	本		十灰2千	

		₹ □		0.09 0.07 0.06 0.03	0.32 0.34 0.12 0.04			0.36 0.08 0.04 <0.04	0.30 0.12 0.09 0.05
		代謝物 0	平均值	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011			<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
	llar?	代謝	最高値	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011			<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
	社内分析機関	代謝物 B	平均值	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011			0.021 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
	社	 	最高値	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011			0.021 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
		シアントラニリプロール	平均值	0.07 0.05 0.04 0.01	0.30 0.32 0.10 0.02			0.33 0.06 0.02 <0.01	0.28 0.10 0.07 0.03
残留值 (mg/kg)	i i	ンアン	最高値	0.07 0.05 0.04 0.01	0.30 0.33 0.11 0.02			0.33 0.06 0.02 <0.01	0.28 0.10 0.07 0.03
残留値(41		0.05 0.05 <0.04 <0.04	0.34 0.20 0.10 0.05	0.07 <0.05 <0.05 <0.05	0.17 0.14 0.07 <0.05	0.57 0.07 0.06 <0.04	0.27 0.11 0.08 0.04
		代謝物 0	平均值	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
		代謝	最高値	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
	公的分析機関	物B	平均值	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
	公	代謝物	最高値	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
		・ラニリール	平均値	0.03 0.03 <0.01 <0.01	0.32 0.18 0.08 0.03	0.03 <0.01 <0.01 <0.01	0.13 0.10 0.03 <0.01	0.55 0.05 0.04 <0.01	0.25 0.09 0.06 0.02
		シアントラニリプロール	最高値	0.03 0.03 <0.01 <0.01	0.33 0.18 0.08 0.03	0.03 <0.01 <0.01 <0.01	0.13 0.10 0.03 <0.01	0.56 0.05 0.04 <0.01	0.25 0.09 0.06 0.02
	IIId	ГН. (Ш)		1 3 7 14	1 7 14	1 3 7 14	1 3 7 14	1 3 7	1 3 7 14
	□	数回		1+3	1+3	1+3	1+3	1+3 1+3 1+3 1+3	1+3 1+3 1+3 1+3
	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	使用重 (g ai/ha)		0.234 ^{SC} g ai/セル トレイ	$^{+}_{131}$ $^{-}_{155}$	0.01 ^G /株 + 113 ^{SC}	0.01 ^G /株 + 127 ^{SC}	0.234 ^{SC} g ai/セル トレイ	$^+_{103\sim}$
紅	鑾	影り	燅	1	-	-1	1	П	Н
作物名 (栽培形態) [分析部位] 実施年度				キャベツ(霧地)	[秦球] 平成 21 年	キャベツ(霧地)	[基葉] 平成 23 年	ブロッコリー (露地) [花曹] 平成 22 年	ブロッコリー (露地) [花蕾] 平成 21 年

																					1								_			
		붙♡			\	\		\	\	\		\	\		\	\	\	1.02	0.86	0.53	0.24	2.46	2.90	4.33 9.91	1777	\	\	\			\	
		0 %	平均值		\	\			\	\		\	\			\	\	<0.011	<0.011	<0.011	<0.011	<0.011	0.021	0.031	7.50.0	\	\	\	/		\	/
		代謝物 0	最高値		\	\			\	_		\	\			\	_	<0.011	<0.011	<0.011	<0.011	<0.011	0.021	0.031	170:0		\	_			\	
	社内分析機関	代謝物 B	平均值		\	\			\	_		\	\			\	_	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	0.011	110:0.	\	\	\			\	
	社	代謝	最高値															<0.011 <0.011 <0.011 <0.011		<0.011 <0.011 0.011 <0.011		11000										
		シアントラニリプロール	平均値		\	\			\			\	\			\		1.00	0.84	0.51	0.22	2.44	2.87	4.29 9.18	07:17	\	\	\			\	
(mg/kg)			最高値		\	\			\	\		\	\		\	\	\	1.03	0.85	0.52	0.23	2.45	2.98	4.37 9.19	37:7	\	\	\			\	/
残留值 (mg/kg)		☆ □		02.0	0.24	0.13	0.00	0.80	$0.15 \\ 0.17$	0.09		\	\		\	\	\	66.0	09.0	0.38	0.38	2.66	1.82	3.88 9.10	00.0	0.66	080	0.00	0.0	0.82	0.37	0.36
	公的分析機関	代謝物 0	平均値	<0.02	<0.02	<0.02	<0.02	<0.02 <0.09	<0.02	<0.02		\	\			\	\	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	110.07	20.07	20.05 <0.09	<0.02		<0.02	<0.02	<0.02
		代謝	最高値	<0.02	<0.02	<0.02	<0.02	20.02 <0.09	<0.02	<0.02		\	\		\	\	\	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	110.07	20.02	<0.05	<0.05		< 0.05	<0.02	<0.02
		代謝物 B	平均値	<0.02	<0.02	<0.02	<0.02 0.08	20.02	<0.02	<0.02		\	\			\	\	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	110.07	20.07 20.09	<0.0>	<0.05		< 0.05	<0.02	<0.02
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		最高値	<0.02	<0.02	<0.02	<0.02	0.0Z	<0.02	<0.02		\	\			\	\	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	110.07	20.02	<0.02	<0.05		\(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \	<0.02	<0.02
		シアントラニリ プロール	平均値	99.0	0.20	0.09	0.02	0.82	0.13	0.05	0.13	0.06	0.01	-0.01 0.03	0.02	<0.01	<0.01	0.97	0.58	0.36	0.36	2.64	1.80	3.86 9.08	00.1	0.10	20:0 0 76	0.45	1 1	0.78	0.33	0.32
		シアンプ	最高値	99.0	0.21	0.09	0.03	0.82	0.13	0.05	0.13	0.06	0.01	0.02	0.03	<0.01	<0.01	0.98	09.0	0.37	0.37	2.73	1.80	4.03 9.11	07.0	07.0	0.02	0.45		0.78	0.33	0.32
	рш			1	က	<u>-</u> ,	14	⊣ წ	o [-	14	1	က ၊	<u>- 7</u>	- 1	۰ cc	2	14	1	အ	7	14	П	က	7 7	-	т с) L	- 4	,	1	o [-	14
	□	回隣		1+3	1+3	1+3	1+3		1+3	1+3	1+3]+;;	1+3	1 + 5 2 + 1	1+3	1+3	1+3	1+3	1+3	1+3	1+3	1+3	1+3] + က - က - က	0 - 1	T + ၁	1 - 0	1+3) (1+3	1+3	1+3
	使用量 (g ai/ha)				+ ;	120	14050	0.015/株	+ 60	103°C	0	$0.234^{ m sc}$	g a1/4//	<u>.</u> 7 +	$\frac{1}{112}$	$142^{\mathrm{SC}\S}$			$0.234^{ m SC}$	g ai/t/l	~ \ \	+ ;	$103\sim$	155^{sc}	$0.01^{G\$}$	茶	+	$114\sim$	130sc	0.01 ^{Gs} /	∮ +	$114^{ m SC}$
艋					-	+	1		-			-							-	-				ı			П				-	
作物名 (栽培形態) [分析部位] 実施年度					ブロッコリー	ヘー・ファイン・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・	(配報)	[花蕾]	平成23年			カリフラワー	(梅野)		[化雷]	平成 25 年			1.47	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(施設)	極大	平民27年	+ 17 %(-			レタス	(施設)		· · · · · · · · · · · · · · · · · · ·	十灰 73 年	

					<u> </u>							<u> </u>	<u> </u>					
	社内分析機関	桿型																
		代謝物 0	本均值															
		代謝	最高值															
		代謝物 B	平均値															
	社	代謝	最高値															
		シアントラニリ プロール	平均值															
(mg/kg)			最高値															
残留値 (公的分析機関	福口																
		代謝物 0	平均值															
		代謝	最高値															
		代謝物 B	平均値															
	公		最高値															
		シアントラニリ プロール	平均值	$0.09 \\ 0.14 \\ 0.01$	0.03 <0.01 <0.01	<0.01 <0.01 <0.01	0.03 0.05 0.03	$0.92 \\ 0.46 \\ 0.12$	0.07	0.02 <0.01 <0.01	0.02	0.03 <0.01 <0.01	60.0	0.08 <0.01 <0.01				
		シアンプロプ	最高値	$0.09 \\ 0.14 \\ 0.01$	0.03 <0.01 <0.01	<0.01 <0.01 <0.01	0.03 0.05 0.03	$0.93 \\ 0.46 \\ 0.12$	0.07	0.02 < 0.01 < 0.01 < 0.01	0.02	0.03 <0.01 <0.01	60'0	0.08 <0.01 <0.01				
	рші			$\begin{array}{c} 7\\14\\21\end{array}$	7 14 21	$\begin{array}{c} 7\\14\\21\end{array}$	$\begin{array}{c} 7\\14\\21\end{array}$	$\begin{array}{c} 7\\14\\21\end{array}$	41	$\begin{array}{c} 7\\14\\21\end{array}$	32	$\begin{array}{c} 7\\14\\21\end{array}$	39	7 14 21				
	囯	(回) 禁							1		1		1					
12		度用量 g ai/ha)			93.5 ^{sc}		082 60	30.02	0.234 ^{sc} / セルトレイ	93.5^{SC}	0.234 ^{SC} / セルトレイ	$93.5^{ m sc}$	0.234 sc/ セルトレイ	$93.5^{ m sc}$				
紅			数	1	1	111	1	111	-	-				-				
14-14-17	(特拉芬德)	(教治/形) [分析部位] 宝婚年库	大層十茂	に まった	(基製)	平成 25 年	みずな (施設)	[鏊葉] 平成 25 年	チンゲン サイ (大 (大 (大 (大 大 大 大 大 大 大 大 大 大 大 大									

	-														ı			ı									
		4					\		\	\			\		0.445	0.305	0.205	0725	0.576	0.145		\				\	
		例 ()	平均值				\	/		\	/		\		<0.044	<0.044	<0.044	0.044	0.054	<0.044		\	\	/		\	
]	代謝物 0	最高値							\			\	\	<0.044	<0.044	<0.044	0.044	0.054	<0.044		\	\	/		\	
	社内分析機関	代謝物 B	平均値				\			\			\	\	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042		\	\			\	
	社	代謝	最高値										\	\	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042		\				\	
		シアントラニリプロール	平均值	0.04 8.80	8.07 7.26	0.38	9.81	6.16 4.37	0.21	6.4 <i>7</i> 6.32	3.56	0.46	5.25 7.91	3.08	0.36	0.22	0.12	0.64	0.48	0.06		\	\			\	
(mg/kg)			最高値	$0.04 \\ 8.86$	8.23	0.38	9.90	8.20 4.39	0.21	6.60 6.40	3.60	0.47	5.27 7.37	3.12	0.37	0.22	0.12	0.65	0.48	0.07		\	\			\	
残留值		₹ □					\			\			\		0.516	0.316	0.256	0.816	0.656	0.186		\	\			\	
		代謝物 0	平均值										\		<0.044	<0.044	<0.044	<0.044	<0.044	<0.044		\	\			\	
		保謝	最高値										\		<0.044	<0.044	<0.044	<0.044	<0.044	<0.044		\	\			\	
	公的分析機関	代謝物 B	平均値										\		<0.042	<0.042	<0.042	<0.042	<0.042	<0.042		\	\			\	
	公		最高値				\						\		<0.042	<0.042	<0.042	<0.042	<0.042	<0.042		\	\			\	
		シアントラニリ プロール	平均値										\		0.42	0.22	0.17	0.73	0.57	0.10	0.16	0.30	$0.15 \\ 0.24$	0.11	09.0	0.19	0.19
		シアンプロプ	最高値				\			\			\	\	0.44	0.23	0.17	0.73	0.57	0.10	0.17	0.30	$0.15 \\ 0.24$	0.11	0.61	0.19	$0.19 \\ 0.13$
	DHI	(H)		$63 \\ 1$	3	33	٦ ,	5	61	– დ	7	33	⊣ წ	o [-	1	ကေး၊	<u>-</u> 4		က	7 7	-	ကျ	7 7	21	1 8	<u> </u>	14 21
	回禁回			$\frac{1}{1+3}$	1+3 1+3	1	1+3	1+3 1+3	1	1+3 1+3	1+3	1,	1+3 1+3	1+3	1	1+3	1+3 1+3 1+3	-	1+3	1+3	- '	:+: :	1+3	1+3	1+3	1+3	1+3 1+3
	使用量 (g ai/ha)				+ 87.0sc §	$0.234^{ m sc}$	セルトレイ	$^+_{83.9^{ ext{SC}\$}}$	0.234 ^{sc} /	- - - - - - - - - - - - - - - - - - -	$95.3^{\mathrm{SC\$}}$	$0.234^{ m sc}$	7 7 + +	$82.4^{\mathrm{SC}\$}$		0 0	0.23450%/ セルトレイ	. +	$103^{ m sc}$	_	30	1870 503	$^{+}_{103^{ m SC}}$		1870 SC §	+	$92.7^{ m SC}$
揺	鏺	引場	数	0.234 ^{sC} / カイイイキ	-		-						-			-			-	-		,				1	
作物名 (栽培形態) [分析部位] 実施年度				J-7	レダス	(施設)	茶	平成 25 年		サラダ菜	(施設)	[基葉]	平成 25 年			H H	(離知)	華州	 	十以 71 十			なが	(露地)	本	平成 24 年	

		√ □										0.08 0.10 0.10 0.10	0.16 0.15 0.11 0.13
		代謝物 0	平均值									<pre></pre>	<pre><0.011 <0.011 <0.011 <0.011</pre>
	Ą	代謝	最高値									<pre></pre>	<0.011 <0.011 <0.011 <0.011
	社内分析機関	代謝物 B	平均值									<pre></pre>	<0.011 <0.011 <0.011 <0.011
	社	代謝	最高値									<pre><0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011
		トラニリール	平均值	0.03 0.01 <0.01	0.06 0.01 <0.01							0.06 0.08 0.08 0.08	0.14 0.13 0.09 0.11
(mg/kg)		インアント プロー	最高値	0.03 0.01 <0.01	0.06 0.01 <0.01							0.07 0.08 0.08 0.08	0.14 0.13 0.09 0.11
残留値		넅무										0.08 0.09 0.08 0.08	0.22 0.20 0.13 0.12
		代謝物 0	平均値									<0.011 <0.011 <0.011 <0.01	<0.011 <0.011 <0.011 <0.01
		保謝	最高値									<pre><0.011 <0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011
	公的分析機関	物B	平均值									<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011
	公	代謝物	最高値									<pre><0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011
		ントラニリ プロール	平均值			0.01 <0.01 <0.01	$0.02 \\ 0.01 \\ < 0.01$	0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	$0.02 \\ 0.01 \\ 0.02$	0.06 0.07 0.06 0.06	0.20 0.18 0.11 0.10
		バーロン バーロン	最高値			0.01 <0.01 <0.01	$0.02 \\ 0.01 \\ < 0.01$	0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	$0.02 \\ 0.01 \\ 0.02$	0.07 0.07 0.07 0.06	0.20 0.18 0.11 0.10
	рші	ГП (П)		1 3 7	1 3	$\begin{array}{c} 1 \\ 3 \\ 7 \end{array}$	$\begin{array}{c} 1 \\ 3 \\ 7 \end{array}$	$\begin{array}{c} 1\\ 3\\ 7 \end{array}$	$\begin{array}{c} 1\\ 3\\ 7 \end{array}$	1 3 7	1 3	1 3 7 14	1 3 7 14
	□	(回) 禁		69 69	60 60	ကကက	ကကက	ကကက	ကကက	ကကက	ය ය ය	1+3 1+3 1+3	1+3 1+3 1+3
	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	医加斯 (g ai/ha)		149^{SC}	$143^{ m SC}$	78.3sc	96.8 ^{sc}	$92.2^{ m sc}$	$91.2^{ m sc}$	$143^{ m SC}$	$134^{ m sc}$	0.0117 ^{SC} g ai/株	$^+_{149^{\sim}}_{155^{ m SC}}$
紅	鑾	影り	燅	1	П	1	П	1	1	1	П	1	П
17 44 -11	作物名 (特拉形館)	(教石/版) [分析部位] 宝松年	天旭十茂	アスパラガス (露地)	[若茎] 平成 25 年	にんじん	(露地) [根部]	平成 25 年	にんじん (露地)	[根部] 平成 26 年	にんじん (露地) [根部] 平成 27 年	トマト (海汊)	[果実] 平成 21 年

				1										<u> </u>																
		4		<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		\		\	\	0.16	0.21 0.13	0.11	96 0	0.17	0.07		0.08	0.04	<0.04		0.12	0.04	0.07 <0.04
		代謝物 0	平均値	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011		\		\		<0.011	<0.011 <0.011	<0.011	<0.011	<0.011	<0.011		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011
	III az	代謝	最高値	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011		\		\		<0.011	<0.011 <0.011	<0.011	<0.011	<0.011	<0.011		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011
	社内分析機関	代謝物 B	平均値	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011		\		\		<0.011	<0.011 <0.011	<0.011	<0.011	<0.011	<0.011		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011
	#	代謝	最高値	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011		\		\		<0.011	<0.011 <0.011	<0.011	<0.011	<0.011	<0.011		<0.011	<pre></pre>	<0.011		<0.011	<0.011	<0.011
		シアントラニリ プロール	平均值	0.14	0.12	0.06	<0.01	0.40	0.38	0.26	0.10		\		\		0.14	$0.19 \\ 0.11$	0.09	0.94	0.15	0.05 < 0.01		0.06	0.05	<0.01		0.10	0.02	0.05 <0.01
(mg/kg)		ンアン	最高値	0.14	0.12	0.06	<0.01	0.40	0.38	0.26	0.11		\		\		0.14	$0.19 \\ 0.11$	60.0	0.94	0.15	0.05 < 0.01		90.0	0.02	<0.01		0.10	0.02	<0.01
残留値 (合計		<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	0.25	$0.15 \\ 0.14$	0.52	0.50	0.21	0.19	$0.16 \\ 0.13$	0.11	0.99	0.16	0.07 < 0.04		0.07	0.05	0.04 <0.04		0.11	0.07	0.04 <0.04
		代謝物 0	平均值	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.02 <0.03	<0.05 <0.02	<0.02	<0.02	<0.02	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011
		代謝	最高値	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.02	<0.02	<0.02	<0.02	<0.02	<0.011	<0.011 <0.011	<0.011	<0.011	<0.011	<0.011 <0.011		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011
	公的分析機関	物B	平均値	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.02	<0.02 <0.02	<0.02	<0.05	<0.02	<0.011	<0.011 <0.011	<0.011	<0.011	<0.011	<0.011		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011
	公	代謝物	最高値	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.02 <0.03	<0.02	<0.02	<0.02	<0.02	<0.011	<0.011 <0.011	<0.011	<0.011	<0.011	<0.011		<0.011	<0.011	<0.011		<0.011	<0.011	<0.011
		シアントラニリ プロール	平均値	0.12	0.11	0.05	0.01	0.51	0.37	0.26	80.0	0.21	0.10	0.48	0.46	0.17	0.17	$0.14 \\ 0.11$	0.09	0.80	0.14	0.05		0.05	0.03	<0.02		0.09	0.05	0.0z <0.01
		シアン	最高値	0.12	0.11	0.05	0.01	0.51	0.38	0.26	80.0	0.21	0.13	0.49	0.47	0.17	0.17	0.14	0.09	0.91	0.14	0.05		0.05	0.03	<0.02		0.09	0.05	0.0z <0.01
	DHI	(H)		1	က	7	14	1	က	_ ;	14	1	o [-	1	က	7	1	n 1-	14	-	က	7		П о	7 C	14		1	1 က	14
	П	(回		1+3	1+3	1+3	1+3	1+3	1+3	1+3	1+3	1+3 + 2 - 3	1+3	1+3	1+3	1+3	1+3	1+3 1+3	1+3	1+3	1+3	1+3		1+3	1+3	1+3		1+3	1+3	1+3
	作用导	医加斯 (g ai/ha)			0.01176/	0.0111/2/	₹-	103 ←	155SC	001		0.016/4	+	$104\sim$	$129^{ m sc}$			0.01178C	g ai/株	$^+$ 125^{\sim}	$155^{ m sc}$				č	0.0117 ^{SC} g ai/株	+ \$ \frac{1}{2}	$113\sim$	10°2	
私:	盤	明	羧		-	-			•	+		-	1		-			Н			-	-			Н				Н	
作物名	(事体形態)	(女石万段) [分析部位] 生粘年	米周十及) [[L	7 >	(施設)	[善書]	では、	十九义 74 十		パーマン	(施設)	通色	I 	半成 24 年	なす	(超段)	[木光] 平成21年	なす	(施設)	[果集]	+ 77 74 4	() () () () () () () () () ()	(超效)	[果寒]	平成 21 年	をゆうり	(施設)	[果実] 平成 22 年

		.1_											
		투무											
		代謝物 0	平均值										
		代謝	最高値										
	社内分析機関	代謝物 B	平均值										
	社	代謝	最高値										
		トラニリ ュール	平均値	0.04 0.03 0.02 0.02	0.02 0.03 0.04 0.02								
(mg/kg)		ンアン	最高値	0.04 0.03 0.02 0.02	0.02 0.03 0.05 0.02								
残留値 (두											
<i>A</i>		物 0	平均值										
		代謝物 0	最高値										
	公的分析機関	物B	平均值										
	公	代謝物B	最高値										
		アントラニリ プロール	平均值			<0.005 <0.005 <0.005							
		ジアントラニリ プロール	最高値			<0.005 <0.005 <0.005							
	ППО	(H)		1 3 7 14	1 3 7 14	$\frac{52}{57}$	68 75 82	52 57 62	68 75 82	77 84 91	69 69	77 84 91	69 76 83
	П	回数		ကကကက	6 6 6	1 1 1			111		1 1 1		1 1 1
	年田山	医加重 (g ai/ha)		$119^{ m SC\$}$	$107^{ m SC\$}$	$0.0117^{ m SC}$	g ai/株						
掹	繿		黎	\vdash	П	1	П	П	П	П	1	П	1
11-11-11	(事故財體)	(私名/心影) [分析部位] 宝饰年声	大型十六	かぼちゃ (施設)	[果実] 平成 25 年	すいか (施設)	[果実] 平成 25 年	すいか (施設)	[果构] 平成 25 年	メロン (施設)	[果実] 平成 25 年	メロン(施設)	[果构] 平成 25 年

											-1																											
		☆ □		0.16	0.15	0.08	0.04	0.50	0.56	0.48	0.12	0.03	<0.04	0.03	<0.04	0.04	0.04	0.04	0.04	0.70	0.74	0.66	0.53	0.86	0.63	0.63	0.61	0.22	0.21	0.19	0.16	0.22	<0.13	<0.13	<0.13	0.14	0.11	0.06
		0 %	平均值	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.011	<0.011	<0.011
]	代謝物 0	最高値	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	< 0.044	<0.011	<0.011	<0.011
	社内分析機関	物B	平均值	<0.011	0.011	<0.011	<0.011	0.011	0.021	0.031	0.021	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.042	< 0.042	< 0.042	< 0.042	<0.042	<0.042	<0.042	< 0.042	<0.042	<0.042	<0.042	< 0.042	<0.042	<0.042	<0.042	< 0.042	<0.011	<0.011	<0.011
	杆	代謝物 B	最高値	<0.011	0.011	<0.011	<0.011	0.011	0.021	0.031	0.021	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.042	< 0.042	< 0.042	< 0.042	<0.042	< 0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.011	<0.011	<0.011
		・ラニリール	平均值	0.14	0.13	90.0	0.02	0.48	0.53	0.44	0.10	0.01	<0.01	0.01	<0.01	0.02	0.02	0.02	0.02	0.61	0.65	0.57	0.44	0.77	0.54	0.54	0.52	0.13	0.12	0.10	0.07	0.13	<0.04	<0.04	<0.04	0.12	60.0	0.04
(mg/kg)		シアントラニリ プロール	最高値	0.15	0.13	90.0	0.03	0.49	0.54	0.46	0.10	0.01	<0.01	0.01	<0.01	0.02	0.03	0.02	0.02	0.62	89.0	0.58	0.45	0.79	0.55	0.54	0.53	0.13	0.13	0.10	0.07	0.13	<0.04	<0.04	<0.04	0.12	60.0	0.04
残留値 (:		合計	I	0.16	0.17	0.08	0.04	0.56	0.67	09.0	0.14	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	6.0	0.7	8.0	8.0	1.2	1.0	8.0	1.1	0.3	0.2	0.2	0.2	0.2	<0.2	<0.2	<0.2		\	\
		0 倾	平均值	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	< 0.044	<0.044	<0.044	<0.044	< 0.044		\	\
		代謝物 0	最高値	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	<0.044	< 0.044	<0.044	<0.044	<0.044	< 0.044		\	\
	公的分析機関	物B	平均値	<0.011	0.021	<0.011	<0.011	0.021	0.021	0.031	0.031	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.042	<0.042	<0.042	<0.042	0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	< 0.042	<0.042	<0.042	<0.042	< 0.042		\	\
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	代謝物	最高値	<0.011	0.021	<0.011	< 0.011	0.021	0.021	0.031	0.031	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.042	< 0.042	< 0.042	< 0.042	0.042	< 0.042	<0.042	<0.042	< 0.042	<0.042	<0.042	< 0.042	< 0.042	<0.042	<0.042	< 0.042		\	\
		、ラニリール	平均値	0.14	0.14	90.0	0.02	0.53	0.64	0.56	0.10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	08.0	0.62	0.74	0.71	1.13	0.91	0.75	1.00	0.20	0.16	0.13	0.09	0.12	<0.04	<0.04	<0.04		\	\
		シアントラニリ プロール	最高値	0.14	0.14	90.0	0.02	0.55	0.64	0.56	0.10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.80	0.63	0.75	0.72	1.18	0.93	0.75	1.01	0.20	0.16	0.13	0.09	0.13	<0.04	<0.04	<0.04		\	\
	рш	(H)		1	က	7	14	1	က	7	14	П	က	7	14	1	က	7	14	1	3	7	14	1	3	7	14	1	ဂ	7	14	1	3	7	14	1	က	<u> </u>
	П	回隣		3	က	က	3	3	က	က	3	က	က	ಣ	3	က	က	က	3	3	က	က	က	3	က	က	3	3	ಣ	က	3	3	က	အ	3	3	က	က
	世田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	医加斯里 (g ai/ha)			OZ OSC	31.3-			103SC	700					1 4 9SC	140-							1 4 9SC	149					1 26SC	1001			1 4 9 SC	140~ 0			196SC	071
掹	鑾	ほ場	羧		-	+			-	-			-	-			-	-			-	+			-	+			-	-			-	+			-	4
化协力	(特拉斯德)	(私石/尼慰) [分析部位] 士佐年	天旭十伎		ンがすみ	んてみめ	(露地)	[42]	5. 2. 4. 4.	平成 41 年			/ マテ・/ 177 日で	通信やなる	(施設)	[国内]	「 「 た 上 に に に に に に に に に に に に に	十八人 41 十				領がある	(施設)	[母亩]	(大文) () () () ()	十八次 7.1 十			4.4.7	3+1145-51	(露地)	事画	X H H H H H H H H H H H H H H H H H H	十八 77 十		キヹ゙゙゙゙゙゙゙゙゙゙゙゙	`	[米米] 京長21年

				_						<u> </u>			T		_		<u> </u>		_	J														
		44	ı	0.30	0.29	0.14	0.14	0.11	0.10	0.20	0.15	0.14	0.09	0.21	0.10	0.20	0.39	0.42	0.37	0.27	0.04	0.05	0.04	0.0	0.04	0.04	0.04	2.61	2.56	0.72	0.31	1.45	1.14	0.73
		代謝物 0	平均值	0.011	0.022	0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.011	0.022	0.022	0.022	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.011	0.011	<0.011	<0.011	<0.011	<0.011	<0.011
		代謝	最高値	0.011	0.022	0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.011	0.022	0.032	0.022	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.011	0.011	<0.011	<0.011	<0.011	<0.011	<0.011
	社内分析機関	物B	平均值	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.062	0.104	0.031	0.021	0.042	0.042	0.042
	社	代謝物 B	最高値	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.073	0.114	0.031	0.021	0.042	0.042	0.042
		トラニリール	平均值	0.28	0.26	0.12	0.12	0.09	0.08	0.18	0.13	0.12	0.07	0.19	0.10	0.18	0.37	0.39	0.34	0.24	0.02	0.03	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.01	0.01	0.01	0.01	2.54	2.44	0.68	0.28	1.40	1.09	0.68
mg/kg)		シアントラニ プロール	最高値	0.29	0.26	0.13	0.13	0.09	0.08	0.19	0.13	0.13	0.07	0.19	0.17	0.18	0.37	0.40	0.35	0.25	0.02	0.03	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.01	0.01	0.01	0.01	2.56	2.52	0.70	0.29	1.43	1.09	0.70
残留值 (mg/kg)		4			\	\	0.10	0.12	0.06	0.15	0.16	0.18	0.10	0.19	0.17	0.14	0.28	0.32	0.30	0.28	0.04	<0.04 0.04	0.04	0.04	0.04	0.04	<0.04	2.41	1.12	1.31	0.47	2.42	1.72	1.14
		0 傾	平均值		\		<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011
		代謝物 0	最高値		\	/	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011
	公的分析機関	物B	平均値		\	/	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.062	0.031	0.083	0.031	0.052	0.042	0.052
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	代謝物	最高値		\		<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	0.062	0.031	0.083	0.031	0.052	0.042	0.052
		、ラニリール	平均値		\		0.08	0.10	0.04	0.13	0.14	0.16	0.08	0.17	0.15	0.12	0.26	0.30	0.28	0.26	0.01	<0.01	0.01	0.02	0.02	0.05	<0.01	2.34	1.08	1.22	0.43	2.36	1.67	1.08
		シアントラニ プロール	最高値		\		0.09	0.11	0.04	0.13	0.15	0.16	0.09	0.17 0.15	0.10	0.12	0.26	0.31	0.28	0.26	0.01	<0.01	0.01	0.02	0.02	0.02	<0.01	2.34	1.08	1.24	0.44	2.42	1.68	1.11
	DIII	(H)		1	7	14	1	n r	14	1	က	7	14	٦ ·	o 1	14	1	3	7	14	1	ကျေ	·	1	က	7	14	1	က	7	14	1	က	· 7
	□	(回) 禁		6	က	3	က	ಌ ೧	ာက	3	က	က	ۍ د	ကင	റെങ	က	3	က	ಣ	3	က	က	ကင	o cc	က	က	3	8	ಣ	က	3	8	က	ကက
	併田目	医加重 (g ai/ha)			$102^{ m sc}$			$184^{ m sc}$			904SC	±07			$163^{ m sc}$			$163\sim$	$166^{ m sc}$			$146^{ m sc}$:		75001	10355	Ī		1 1 GSC	041			163sc	}
私	纝	影り	羧		-			1			-	1			1			-	-			-			-	_			-	-			-	
VC-Mm A	(果拉瑟德)	(松石/尼斯)[分析部位] 生物作	未超十岁	すだち	[果実]	平成 21 年		ったバ	(露地)	(事)	[大人] 片语 5 年	十17~17			なし	(露地)	画	 	十,12,27			nj nj	0 全	(路地)		半灰 21 年			7	و م	(露地)	[果皮]	京が1年7年	- 1 7

		4			\	_	/		\	_			\	_			\	\	/		\	_	,		\	_			\	\	,		\	
		ŋ O	平均値		\	\	/		\	\			\	\			\	\			\	\			\	\			\	\			\	
		代謝物 0	最高値		\	\			\	\	/		\	\			\	\			\	\			\	\	/		\	\	/		\	
	社内分析機関	物B	平均値		\	\			\	\			\	\			\	\			\	\			\	\			\	\			\	
	社	代謝物 B	最高値		\	\			\	\			\	\			\	\			\	\			\	\			\	\			\	
		アントラニリ プロール	平均値		\	\			\	\			\	\			\	\			\	\			\	\			\	\			\	
(mg/kg)		シアントラバーログ	最高値		\	\			\	\			\	\			\	\			\	\			\	\			\	\			\	
残留値 (mg/kg)		슈큐		0.23	0.16	0.13	0.12	0.47	0.28	0.30	0.22	0.35	0.20	0.12	0.10	0.44	0.28	0.15	0.21	0.00	0.04	0.04	<0.04	0.16	0.07	0.22	0.06	0.34	0.39	0.29	0.27	0.34	0.30	$0.46 \\ 0.34$
		物 0	平均値	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	$< 0.011 \\ 0.011$
		代謝物 O	最高値	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	$< 0.011 \\ 0.011$
	公的分析機関	代謝物 B	本均值	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.011	0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.011	0.021	0.021	0.021	0.021	0.011	$0.021 \\ 0.021$
	\ <u>\</u>	代謝	最高値	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	0.011	0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.011	0.021	0.021	0.021	0.021	0.011	$0.021 \\ 0.032$
		トラニリ ール	平均値	0.21	0.14	0.11	0.10	0.45	0.26	0.28	0.20	0.33	0.18	0.10	0.08	0.42	0.26	0.13	0.19	0.04	0.01	0.01	<0.01	0.14	0.05	0.20	0.04	0.32	0.36	0.26	0.24	0.31	0.28	$0.43 \\ 0.31$
		シアントラニ プロール	最高値	0.21	0.15	0.11	0.10	0.46	0.27	0.29	0.20	0.33	0.19	0.10	0.09	0.43	0.27	0.13	0.19	0.04	0.01	0.01	<0.01	0.15	0.05	0.21	0.05	0.33	0.36	0.26	0.24	0.31	0.29	$0.43 \\ 0.31$
	рпі			1	က	7	14	1	က	7	14	s. T	က	7	14	$1^{\$}$	် လ	7	14	1^{8}	ဏ	ss.	14	T s	ကိ	s <u>/</u>	14	1	က	2	14	-	က၊	, 14
	□	回隣		3	အ	က	3	3	က	က	3	8	အ	က	3	3	က	ဂ	3	3	က	က	3	3	က	က	3	3	က	က	3	ಣ	ကေ	3
	田田田	医用量 (g ai/ha)			1 4 GSC	140°°			1.49SC	140			1 4 8SC	140~ ˆ			1.4980	$145^{\circ\circ}$			1 4 @SC	140~			1.4.7SC				164SC	F 0 1			184sc	
紅	鑾	出場	羧		-	-			-	-			-	-			-	-			-	-			-	4			-	+			_	
17 -711-471	作物名(非拉斯德)	(教石/) 慰() [分析部位] 宝梅布庫	大層十次		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ネンタシン	(露地)	事画	 	+ 77 YU+			₹ ~	826	(露知)	[善書]	了 (大) (大) (大) (大) (大) (大) (大) (大) (大) (大)	半成 22 年			* †	۹ ا	(露知)	[果実]	サビ生産	+ 77 X//+			1 2 7 5	CUC&	(施設)	[果実]	平成 22 年	-

					<u> </u>	<u> </u>			T		T	l	
		투	ı				0.49	0.18	0.38 0.28 0.26 0.11	0.41 0.22 0.28 0.29	0.71 0.65 0.84 0.78	22.8 1.34 <0.14	5.07 2.58 <0.14
		代謝物 0	平均值				<0.011 <0.011 <0.011	<0.011	<pre><0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	1.43 0.065 <0.044	$0.119 \\ 0.238 \\ < 0.044$
		代謝	最高値				<0.011 <0.011 <0.011	<0.011	<pre><0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	1.43 0.073 <0.044	0.119 0.248 < 0.044
	社内分析機関	代謝物 B	平均值				<0.011 <0.011 <0.011	<0.011	<pre><0.011 <0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011	0.021 0.021 0.031 0.031	0.759 0.218 <0.042	0.770 0.478 <0.042
	社	代謝	最高値				<0.011 <0.011 <0.011	<0.011	<pre><0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011	0.021 0.031 0.031 0.031	0.780 0.218 <0.042	0.780 0.489 <0.042
		ントラニリ プロール	平均値				0.47 0.32 0.22	0.16	0.36 0.26 0.24 0.09	0.39 0.20 0.26 0.27	0.68 0.62 0.80 0.74	20.6 1.06 <0.04	4.18 1.86 <0.04
mg/kg)		シアントラニリ プロール	最高値				$0.47 \\ 0.32 \\ 0.23$	0.16	0.37 0.27 0.24 0.09	0.40 0.21 0.26 0.27	0.69 0.64 0.81 0.74	20.7 1.07 <0.04	4.19 1.91 <0.04
残留值 (mg/kg)		合計					$0.36 \\ 0.36 \\ 0.22$	0.13	0.30 0.31 0.18 0.08	0.29 0.34 0.34 0.32	0.74 0.74 1.02 0.71	$\frac{19.5}{1.5}$	4.8 2.5 0.2
		代謝物 0	平均值				<0.011 <0.011 <0.011	<0.011	<pre><0.011 <0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011	<pre><0.011 <0.011 <0.011 <0.011 <0.011</pre>	0.994 0.086 <0.044	0.097 0.194 <0.044
		代謝	最高値				<0.011 <0.011 <0.011	<0.011		<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	0.994 0.086 <0.044	0.097 0.194 <0.044
	公的分析機関	代謝物 B	平均値				<0.011 <0.011 <0.011	<0.011	<pre><0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	0.728 0.229 <0.042	0.749 0.406 < 0.042
	公	代謝	最高値				<0.011 <0.011 <0.011	<0.011	<pre><0.011 <0.011 <0.011 <0.011 <0.011</pre>	<0.011 <0.011 <0.011 <0.011	<0.011 <0.011 <0.011 <0.011	0.728 0.229 <0.042	0.759 0.410 < 0.04
		トラニリール	平均值	$ \begin{array}{c} 1.00 \\ 1.05 \\ 0.83 \\ 0.48 \end{array} $	0.51 0.28 0.34 0.22	1.13 0.80 0.34 0.19	0.34 0.34 0.20	0.11	0.28 0.29 0.16 0.06	0.27 0.32 0.32 0.30	0.72 0.72 1.00 0.69	17.8 1.14 0.06	$3.93 \\ 1.92 \\ 0.04$
		シアントラニ プロール	最高値	1.01 1.07 0.84 0.49	0.51 0.28 0.34 0.22	1.15 0.81 0.35 0.19	0.34 0.34 0.21	0.11	0.29 0.29 0.16 0.06	0.27 0.32 0.32 0.30	0.73 0.73 1.02 0.70	17.9 1.14 0.06	3.99 1.97 0.05
	рит	(H)		1 3 7 14	1 3 7 14	1 3 7 14	1 3	14	1 3 7 14	1 3 7 14	1 3 7 14	7 14 21	7 14 21
	□	(回 蘇		00000	00000	00000	ಣ ಣ ಣ	ာက	0000	00000			
	年田	读用墨 (g ai/ha)		$136^{ m sc}$	$122^{ m sc}$	$143^{ m sc}$		08601	2007	5	2222	00.480	2042
艋	鑾	新品	教	1	Н	П	1		П	н	П	П	1
VEHMA	(非校步)	(秋垣/沙慰) [分析部位] 士姑在 库	夫旭十伐	d N	780 (露地) (果実) (実実) (まま)	平成 22 年	いちご	(施設)	[果実] 平成 21 年	ぶどう (施設) [果実] 平成 21 年	ぶどう (施設) [果実] 平成 22 年	茶 (露地)	[荒茶] 平成 22 年

		√ □		17.9	1.07	0.05	3.49	1.54	0.047
		弋謝物 O	平均値	0.670	0.044	<0.011	0.054	0.097	<0.011
	III o z	代謝	最高値	0.090	0.044	<0.011	0.054	0.097	<0.011
	社内分析機関	弋謝物 B	平均値	0.437	0.062	<0.011	0.198	0.125	<0.011
	社	代謝	最高値	0.437	0.062	<0.011	0.198	0.125	<0.011
		シアントラニリ プロール	平均値	16.8	96.0	0.03	3.24	1.32	0.02
(mg/kg)		シアンロプ	最高値	17.0	0.98	0.03	3.31	1.32	0.02
残留值 (mg/kg)		√ □			\	\		\	\
		代謝物 0	平均値		\	\		\	\
		代謝	最高値		\	\		\	\
	的分析機関	物B	平均値		\	\		\	\
	公的	代謝物	最高値		\	\		\	\
		アントラニリ プロール	平均値		\	\		\	\
		リニテインアン リニティンプン	最高値		\	\		\	\
	DIII	(H)		L	14	21	7	14	21
	囯	(回) 禁		1	П	П	1	П	П
	年田田	医加斯 (g ai/ha)	_			00480	2042		
艋	纝	戦	羧		1			_	
/左桥· 女	(中校分子)	(教石//) [分析部位] 宝姑在 审	大局十岁	‡	*	(露地)	「地田県」		十 77 77十

注)代謝物 B からシアントラニリプロールへの換算係数:1.04、代謝物 O からシアントラニリプロールへの換算係数:1.08 G:粒剤、SC:フロアブル剤 /:分析せず

・全てのデータが定量限界未満の場合は定量限界値の平均に<を付して記載した。

・農薬の使用量、使用回数又は使用時期(PHI)が、登録又は申請された使用方法から逸脱している場合は、使用量、使用回数又は PHI に §を付した。

<別紙4:作物残留試験成績(海外)>

作物名		個(1時/ピ) /				残留值((mg/kg)
(分析部位)	試験	剤型	総処理量	回数	PHI		0 0
実施年	ほ場数		(g ai/ha)	(回)	(目)	最高値	平均値
ばれいしょ							
(塊茎)	3	$10.26\%~\mathrm{OD}$	437 - 454	3	6	0.034	0.019
2009 年							
ばれいしょ							
(塊茎)	15	10.26% OD	428 - 462	3	7	0.007	< 0.004
2009年							
ばれいしょ (塊茎)	3	10.26% OD	448 - 456	3	8	0.02	<0.011
2009年	9	10.26% OD	446 450	0	0	0.02	\0.011
ばれいしょ							
(塊茎)	3	$10.20\%~\mathrm{SE}$	447 - 455	3	6	0.035	0.019
2009年						0,000	0,020
ばれいしょ							
(塊茎)	2	$10.20\%~\mathrm{SE}$	453	3	7	0.009	0.007
2009年							
ばれいしょ		50% FS 及び					
(塊茎)	2	10.26% OD	442 - 446	2	6	0.11	0.048
2009年							
ばれいしょ	10	50% FS 及び	900 465	0	7	0.011	<0.010
(塊茎) 2009 年	12	$10.26\%~\mathrm{OD}$	380 - 465	2	7	0.011	< 0.018
ばれいしょ							
(塊茎)	5	50% FS 及び	412 - 446	2	8	0.052	0.019
2009年		10.26% OD	112 110	_	Ü	0.022	0.015
ばれいしょ		10 CC0/ CC T					
(塊茎)	5	18.66% SC 及 び 10.26% OD	466	2	8	< 0.003	< 0.003
2009年		O' 10.26% OD					
					-0	< 0.003	< 0.003
ばれいしょ					0	< 0.003	< 0.003
(塊茎)	1	50% FS 及び	447	2	1	0.003	< 0.003
2009年		10.26% OD	11.	_	5	< 0.003	< 0.003
					7	<0.003	<0.003
キャベツ							
(外葉あり葉球)	4	10.26% OD	299 - 306	2	1	0.82	0.49
2008年							
キャベツ							
(外葉なし葉球)	3	$10.26\%~\mathrm{OD}$	299 - 306	2	1	0.027	0.016
2008年							
キャベツ		10.000.00				0.55	0 ==
(葉球)	7	10.26% OD	448 - 461	3	1	0.98	0.58
2008年							

作物名	試験	lev l Trbe l	総処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	<u> </u>	(g ai/ha)	(回)	(目)	最高値	平均値
キャベツ (外葉あり葉球) 2008 年	4	10.26% OD	452 - 465	3	1	0.67	0.52
キャベツ (外葉なし葉球) 2008 年	3	10.26% OD	452 - 465	3	1	0.097	0.031
キャベツ (外葉あり葉球) 2008 年	1	18.66% SC 及 び 10.26% OD	451	3	1	0.59	0.50
ブロッコリー (花蕾) 2008 年	3	10.26% OD	301 - 304	2	1	0.61	0.33
ブロッコリー (花蕾) 2008 年	7	10.26% OD	445 - 458	3	1	1.1	0.57
ブロッコリー (花蕾) 2008 - 2009 年	1	10.26% OD	451	1	5	0.13	0.13
ブロッコリー (花蕾) 2008 - 2009 年	1	18.66% SC 及 び 10.26% OD	451	3	1	0.49	0.48
ブロッコリー (花蕾) 2009 年	4	10.20% SE	442 - 451	3	1	1.1	0.74
					0	0.63	0.52
ブロッコリー				2	1	0.57	0.45
(花蕾) 2008 - 2009 年	1	10.26% OD	451		3	0.40	0.32
2000 2000				-	5	0.23	0.21
カリフラワー				3	1	0.92	0.69
カップラット (花蕾) 2008 年	2	10.26% OD	303 - 304	2	1	0.14	0.07
カリフラワー (花蕾) 2008 年	2	10.26% OD	455 - 456	3	1	0.086	0.045
からしな (茎葉) 2008 年	3	10.26% OD	303 - 310	2	1	11	6.5
からしな (茎葉) 2008 - 2009 年	11	10.26% OD	446 - 462	3	1	20	7.38
からしな (茎葉) 2008 年	1	18.66% SC 及 び 10.26% OD	454	3	1	3.3	3.15

作物名	試験	-terl Tril	総処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	<u> </u>	(g ai/ha)	(回)	(目)	最高値	平均值
たまねぎ (鱗茎) 2009 年	9	10.26% OD	443 - 474	3	1	0.029	0.014
					1	0.005	0.005
たまねぎ (鱗茎)	1	10.26% OD	448	3	4	< 0.003	< 0.003
2009 年	1	10.26% OD	440	O.	10	< 0.003	<0.003
					15	< 0.003	<0.003
ねぎ (茎葉) 2009 年	4	10.26% OD	452 - 456	3	1	1.6	0.99
					1	4.1	4.1
ねぎ		10.960/ OD	45.4	0	3	1.4	1.4
(茎葉) 2009 年	1	10.26% OD	454	3	7	0.85	0.85
2000					13	0.16	0.16
					1	0.035	0.034
ねぎ		10.000/ 00			3	0.029	0.029
(茎葉) 2009 年	1	18.66% SC	451	2	7	0.060	0.053
2005					13	0.061	0.054
結球レタス (外葉あり茎葉) 2008 - 2009 年	6	10.26% OD	298 - 309	2	1	2.9	0.75
結球レタス (外葉なし茎葉) 2008 年	3	10.26% OD	298 - 306	2	1	0.21	0.087
結球レタス (外葉あり茎葉) 2008 - 2009 年	12	10.26% OD	445 - 464	3	1	2.9	0.96
結球レタス (外葉なし茎葉) 2008 年	3	10.26% OD	449 - 461	3	1	0.60	<0.20
結球レタス (外葉あり茎葉) 2008 - 2009 年	6	10.20% SE	447 - 466	3	1	2.2	0.88
結球レタス (外葉あり茎葉) 2008 - 2009 年	1	18.66% SC 及 び 10.26% OD	453	3	1	0.017	0.017

作物名	試験	-terl Titl	総処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均値
					0	< 0.003	<0.003
			151	1	3	< 0.003	<0.003
結球レタス		10 000 CG 7			7	0.004	0.004
(茎葉)	1	18.66% SC 及 び 10.26% OD			0	0.005	0.005
2009年		0 10.2070 01	301	2	3	0.01	0.009
					7	0.009	0.008
			45 2	3	1	1.0	0.91
リーフレタス (茎葉) 2008 - 2009 年	5	10.26% OD	301 - 307	2	1	4.9	2.9
リーフレタス (茎葉) 2008 - 2009 年	11	10.26% OD	446 - 460	3	1	7.4	3.2
リーフレタス (茎葉) 2008 年	6	10.20% SE	446 - 454	3	1	7.7	4.4
リーフレタス (茎葉) 2008 年	1	18.66% SC 及 び 10.26% OD	453	3	1	1.1	1.1
				1	5	0.28	0.27
リーフレタス (茎葉)	1	10.26% OD	306		0	3.0	3.0
2008年	1	10.26% OD	300	2	1	2.2	2.1
					3	1.5	1.3
					0	< 0.003	<0.003
			151	1	3	0.015	0.015
リーフレタス		10 CC0/ SC 75			7	0.028	0.025
(茎葉)	1	18.66% SC 及 び 10.26% OD			0	0.032	0.028
2009年			301	2	3	0.028	0.026
					7	0.016	0.017
			451	3	1	1.8	1.7
セルリー (非トリム茎葉) 2008 年	6	10.26% OD	294 - 304	2	1	5.7	2.5
セルリー (トリム茎葉) 2008 年	3	10.26% OD	294 - 302	2	1	4.4	1.7
セルリー (非トリム茎葉) 2008 年	11	10.26% OD	447 - 462	3	1	9.5	2.8

作物名	試験	ded Tru	総処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	<u> </u>	(g ai/ha)	(回)	(日)	最高値	平均值
セルリー (トリム茎葉) 2008 年	3	10.26% OD	453 - 457	3	1	5.4	2.0
セルリー (非トリム茎葉) 2008 年	1	18.66% SC 及 び 10.26% OD	453	3	1	4.1	3.6
			151		0	< 0.003	< 0.003
				1	3	<0.003	<0.003
セルリー		18.66% SC 及			7	<0.003	<0.003
(非トリム茎葉) 2009 年	1	び 10.26% OD	301	0	0	<0.003	<0.003
2003 —				2	3	<0.003	<0.003
			451	0	7	<0.003	<0.003
ほうれんそう			451	3	1	1.1	1.0
(茎葉) 2008 年	4	10.26% OD	302 - 310	2	1	14	7.2
ほうれんそう (茎葉) 2008 - 2009 年	10	10.26% OD	440 - 464	3	1	13	6.3
ほうれんそう (茎葉) 2008 年	1	18.66% SC 及 び 10.26% OD	457	3	1	6.8	6.8
					0	0.007	0.007
			151	1	3	0.006	0.006
ほうれんそう		10 CC0/ CC 7			7	0.005	0.005
(茎葉)	1	18.66% SC 及 び 10.26% OD			0	0.008	0.008
2009 年			301	2	3	0.005	0.005
					7	0.006	0.005
			453	3	1	6.8	6.8
きゅうり (果実) 2008 年	3	10.26% OD	430 - 451	2	1	0.12	0.06
きゅうり (果実) 2008 - 2009 年	10	10.26% OD	430 - 457	3	1	0.20	0.06

作物名	試験		総処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均値
				2	7	<0.003	< 0.003
> 10					0	0.095	0.09
きゅうり (果実)	1	18.66% SC 及	301		1	0.12	0.089
2008年	1	び 10.26% OD	501	3	3	0.053	0.049
					5	0.064	0.060
					6	0.048	0.048
メロン (果実) 2008 年	5	10.26% OD	451 - 460	2	1	0.12	0.075
メロン (果肉) 2008 年	5	10.26% OD	451 - 460	2	1	0.007	<0.004
メロン (果実) 2008 - 2009 年	9	10.26% OD	449 - 460	3	1	0.18	0.092
メロン (果肉) 2008 - 2009 年	9	10.26% OD	449 - 460	3	1	0.008	<0.004
メロン (果実) 2008 年	1	18.66% SC 及 び 10.26% OD	453	3	1	0.024	0.023
メロン (果肉) 2008 年	1	18.66% SC 及 び 10.26% OD	453	3	1	<0.003	<0.003
スカッシュ (果実) 2008 - 2009 年	3	10.26% OD	451 - 463	2	1	0.14	0.097
スカッシュ (果実) 2008 - 2009 年	9	10.26% OD	444 - 463	3	1	0.12	0.061
スカッシュ (果実) 2008 - 2009 年	1	18.66% SC 及 び 10.26% OD	453	3	1	0.031	0.030
トマト (果実) 2008 - 2009 年	9	10.26% OD	297 - 304	2	1	0.19	0.087
トマト (果実) 2008 - 2009 年	19	10.26% OD	443 - 458	3	1	0.28	0.10
トマト (果実) 2008 - 2009 年	1	18.66% SC 及 び 10.26% OD	452	3	1	0.052	0.048

作物名	試験		総処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均値
			151	1	5	0.031	0.024
					0	0.070	0.053
トマト		10.000/.05	201	0	1	0.044	0.044
(果実) 2008 年	1	10.26% OD	301	2	3	0.045	0.041
2000 -					5	0.061	0.054
			452	3	1	0.076	0.065
ピーマン (果実) 2008 - 2009 年	5	10.26% OD	298 - 309	2	1	0.20	0.13
ピーマン (果実) 2008 - 2009 年	11	10.26% OD	447 - 463	3	1	0.28	0.12
ピーマン (果実) 2008 年	1	18.66% SC 及 び 10.26% OD	448	3	1	0.095	0.092
とうがらし (果実) 2008 - 2009 年	4	10.26% OD	297 - 306	2	1	0.41	0.29
とうがらし (果実) 2008 – 2009 年	9	10.26% OD	446 - 470	3	1	0.47	0.18
とうがらし (果実) 2008 - 2009 年	1	18.66% SC 及 び 10.26% OD	452	3	1	0.21	0.18
オレンジ (果実) 2009 年	13	10.20% SE	429 - 463	3	1	0.39	0.21
オレンジ (果肉) 2009 年	13	10.20% SE	429 - 463	3	1	0.092	0.045
グレープフルーツ (果実) 2009 年	7	10.20% SE	446 - 461	3	1	0.33	0.16
グレープフルーツ (果肉) 2009 年	7	10.20% SE	446 - 461	3	1	0.055	0.029
レモン (果実) 2009 年	6	10.20% SE	452 - 462	3	1	0.31	0.20
レモン (果肉) 2009 年	6	10.20% SE	452 - 462	3	1	0.11	0.06

レモン (果実) 3 18.66% SC 448 - 452 1 7 0.003 2009 年 14 <0.003 レモン (果肉) 3 18.66% SC 448 - 452 1 7 <0.003 9んご (果実) 17 10.20% SE 424 - 460 3 3 0.31 9んご 9んご 9んご	平均値 <0.004 <0.003 <0.003 <0.003 <0.003 <0.016
(果実) 3 18.66% SC 448 - 452 1 7 0.003 2009 年 1 7 0.003 レモン 1 <0.003 (果肉) 3 18.66% SC 448 - 452 1 7 <0.003 2009 年 10.20% SE 424 - 460 3 3 0.31 2009 年 りんご	<0.003 <0.003 <0.003 <0.003 <0.003
2009年	<0.003 <0.003 <0.003 <0.003
レモン (果肉) 3 18.66% SC 448 - 452 1 7 <0.003 2009 年 17 10.20% SE 424 - 460 3 3 0.31 2009 年 りんご	<0.003 <0.003 <0.003
(果肉) 3 18.66% SC 448 - 452 1 7 <0.003 2009 年 14 <0.003 りんご (果実) 17 10.20% SE 424 - 460 3 3 0.31	<0.003 <0.003
(果肉) 3 18.66% SC 448 - 452 1 7 <0.003	<0.003
2009年 14 <0.003	<0.003
りんご (果実) 17 10.20% SE 424 - 460 3 3 0.31 2009 年 りんご	
(果実) 17 10.20% SE 424 - 460 3 3 0.31 りんご 10.20% SE 424 - 460 3 3 0.31	0.16
りんご	
	İ
(里)宝)	
(果実) 2 10.20% SE 453 - 455 3 6 0.16	0.12
2009年 りんご	
(果実) 14 10.20% SE 424 - 460 3 7 0.31	0.14
2009年	
りんご	
(果実) 1 10.20% SE 454 3 8 0.073	0.073
2009年	
りんご 2 7 0.097	0.081
(果実) 1 10.20% SE 453 0 0.18	0.17
2009年 1 0.20	0.19
なし	
(果実) 9 10.20% SE 446 - 453 3 0.65 2009 年	0.30
なし なし	
(果実) 2 10.20% SE 446 - 449 3 6 0.12	0.11
2009年	0.11
なし	
(果実) 6 10.20% SE 446 - 453 3 7 0.59	0.33
2009年	
なし (果実) 1 10.20% SE 451 3 8 0.17	0.16
(果実) 1 10.20% SE 451 3 8 0.17 2009 年	0.16
\$ t	
(果実) 12 10.20% SE 446 - 463 3 1.4	0.40
2009年	
\$ t	0 ~ :
(果実) 3 10.20% SE 448 - 462 3 6 0.93	0.54
2009 年 もも	
(果実) 9 10.20% SE 448 - 463 3 7 0.67	0.25
2009年	3. 2 3

作物名	試験	rhed Tital	総処理量	回数	PHI	残留值	(mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均值
					-0	0.17	0.17
t t					0	0.27	0.26
(果実)	1	$10.20\%~\mathrm{SE}$	456	3	1	0.29	0.25
2009年					3	0.22	0.19
					7	0.20	0.18
すもも (果実) 2009 年	1	10.20% SE	463	3	2	0.065	0.064
すもも (果実) 2009 年	8	10.20% SE	448 - 463	3	3	0.30	0.11
すもも (果実) 2009 年	9	10.20% SE	448 - 463	3	7	0.30	0.10
おうとう (果実) 2009 年	7	10.20% SE	434 - 465	3	3	3.9	1.17
おうとう (果実) 2009 年	7	10.20% SE	434 - 465	3	7	3.1	0.88
ブルーベリー (果実) 2009 年	6	10.20% SE	448 - 457	3	3	2.0	1.1
ブルーベリー (果実) 2009 年	2	10.20% SE	456 - 458	3	4	0.85	0.58
					0	0.74	0.66
ブルーベリー (果実)	1	10 000/ CE	4.45	9	2	0.66	0.69
2009年	1	10.20% SE	445	3	7	0.25	0.23
					8	0.19	0.19
					0	1.1	1.1
ブルーベリー (果実)	1 1	10.20% SE	456	3	4	0.55	0.51
2009年	1	10.20% SE	400	3	7	0.31	0.31
					10	0.25	0.24
カノーラ (種子) 2009 年	1	10.26% OD	458	3	1	0.17	0.17
カノーラ (種子) 2009 年	2	10.26% OD	448 - 449	3	6	0.065	0.041
カノーラ (種子) 2009 年	13	10.26% OD	444 - 458	3	7	0.65	0.17

作物名	試験		総処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(日)	最高値	平均值
カノーラ (種子) 2009 年	1	10.26% OD	457	3	8	0.027	0.022
カノーラ (種子) 2009 年	1	50% FS 及び 10.26% OD	78.6 + 375	4	1	0.13	0.12
カノーラ (種子) 2009 年	2	50% FS 及び 10.26% OD	78.6 + 375	4	6	0.048	0.039
カノーラ (種子) 2009 年	2	50% FS 及び 10.26% OD	78.6 + 374	4	7	0.22	0.12
ひまわり (種子) 2009 年	1	10.26% OD	451	3	5	0.059	0.059
ひまわり (種子) 2009 年	2	10.26% OD	441 - 447	3	6	0.36	0.21
ひまわり (種子) 2009 年	6	10.26% OD	444 - 456	3	7	0.15	0.07
綿実 (種子) 2009 年	1	10.26% OD	447	3	6	0.14	0.12
綿実 (種子) 2009 年	4	10.26% OD	448 - 460	3	7	1.2	0.35
綿実 (種子) 2009 年	6	10.26% OD	446 - 453	3	8	0.32	0.13
綿実 (種子) 2009 年	1	18.66% SC 及 び 10.26% OD	446	3	8	0.15	0.15
綿実 (種子) 2009 年	1	10.26% OD	455	3	9	0.18	0.16
			302	2	6	0.33	0.30
綿実					0	0.94	0.80
(種子)	1	$10.26\%~\mathrm{OD}$	459	9	1	0.89	0.76
2009年			453	3	5	0.82	0.69
					7	0.26	0.26

作物名	試験	ded Trul	総処理量	回数	PHI	残留值(mg/kg)		
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均值	
			310	2	6	0.28	0.24	
綿実		10.000/ OD			0	0.63	0.60	
(種子) 2009 年	1	10.26% OD	466	3	5	0.20	0.17	
2009 +					7	0.20	0.18	
綿実								
(繰り綿副産物)	1	$10.26\%~\mathrm{OD}$	447	3	6	2.8	2.7	
2009年								
綿実					_			
(繰り綿副産物)	1	10.26% OD	460	3	7	5.7	5.0	
2009 年 綿実								
(繰り綿副産物)	1	10.26% OD	446	3	8	3.5	3.5	
2009年	_	10.2070 02	110		Ü	3.3	3.3	
綿実								
(繰り綿副産物)	1	$10.26\%~\mathrm{OD}$	455	3	9	2.6	2.6	
2009年								
ペカン (ナッツ)	-	10.90% OD	445 405	9	-	0.01	<0.005	
2009年	5	10.26% OD	445 - 465	3	5	0.01	< 0.005	
ペカン								
(ナッツ)	1	10.26% OD	453	3	4	< 0.003	< 0.003	
2009年								
ペカン								
(ナッツ)	1	$18.66\% \ SC$	462	1	57	<0.003	<0.003	
2009 年 アーモンド								
(ナッツ)	6	10.26% OD	437 - 459	3	5	0.024	0.011	
2009年		10.20% OD	401 400	'	9	0.024	0.011	
アーモンド								
(ナッツ)	2	$10.20\%~\mathrm{SE}$	453 - 458	3	5	0.019	0.013	
2009年								

OD: オイルディスパージョン剤、SE: サスポエマルジョン剤、FS: フロアブルサスペンジョン剤、SC: フロアブル剤

<別紙5:畜産物残留試験成績(泌乳牛)>
- 乳汁、クリーム及びスキムミルク中残留値-

					残留值	(μg/g)			
試料	化合物		53		7		5.0		12
		mg/kg	g飼料	mg/k	g飼料		g飼料	mg/k	g飼料
					最高	高値			
	シアントラニ	0	03	0.11		0.25		0.	71
	リプロール							0.71	
	代謝物 D		.01	< 0.01			.01		.01
	代謝物 B		.01		.01		010		34
乳汁	代謝物 C	<0	.01	<0	.01	<0	.01	<0	.01
	代謝物 I	N	D	N	D	N	D	<0	.01
	代謝物 J	<0	.01		.01	<0	.01	<0	.01
	代謝物 K	<0	.01	<0	.01	0.0)25	0.0	085
	代謝物 Q	0.028		0.074		0.17		0.28	
投	与日	14	21	14	21	14	21	14	21
	シアントラニ リプロール	0.072	0.059	0.2	0.15	0.63	0.46	1.9	1.7
	代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 B	0.014	0.011	0.032	0.027	0.085	0.066	0.37	0.31
クリーム	代謝物 C	ND	ND	ND	ND	ND	< 0.01	ND	< 0.01
	代謝物 I	ND	< 0.01						
	代謝物J	< 0.01	< 0.01	< 0.01	< 0.01	0.026	0.021	0.039	0.041
	代謝物 K	< 0.01	< 0.01	< 0.01	< 0.01	0.020	0.023	0.066	0.079
	代謝物 Q	0.019	0.022	0.048	0.053	0.12	0.14	0.19	0.25
	シアントラニ リプロール	0.019	0.014	0.049	0.039	0.15	0.13	0.47	0.47
	代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
スキム	代謝物 B	ND	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
スヤム	代謝物 C	< 0.01	ND	< 0.01	ND	< 0.01	< 0.01	0.030	< 0.01
ベルク	代謝物 I	ND							
	代謝物 J	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 K	< 0.01	< 0.01	< 0.01	< 0.01	0.022	0.020	0.066	0.051
	代謝物 Q	0.019	0.020	0.047	0.057	0.12	0.13	0.22	0.18

- 組織中残留値-

					残留値	(μg/g)			
試料	化合物	3.	53	11		35	5.0	112	
武作	76'E 100	mg/k	g飼料	mg/k	g飼料	mg/k	g飼料	mg/k	g飼料
		平均值	最高値	平均值	最高値	平均値	最高値	平均値	最高値
	シアントラニ リプロール	<0.01	0.011	0.026	0.037	0.071	0.092	0.28	0.33
	代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 B	< 0.01	< 0.01	< 0.01	< 0.01	0.010	0.018	0.027	0.043
筋肉	代謝物 C	ND	ND	ND	ND	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 I	ND							
	代謝物J	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 K	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.011
	代謝物 Q	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	シアントラニ リプロール	0.054	0.066	0.15	0.16	0.46	0.6	1.7	2.1
	代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01
	代謝物 B	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.015	0.026
肝臓	代謝物 C	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.011
	代謝物 I	ND	ND	ND	ND	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物J	0.032	0.043	0.075	0.099	0.22	0.29	0.41	0.57
	代謝物 K	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.025	0.026
	代謝物 Q	< 0.01	0.01	0.021	0.024	0.042	0.046	0.076	0.079
	シアントラニ リプロール	0.023	0.031	0.084	0.14	0.20	0.25	0.73	0.89
	代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.011	0.012
	代謝物 B	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.013	0.024	0.031
腎臓	代謝物 C	ND	ND	ND	ND	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 I	ND							
	代謝物J	< 0.01	0.011	0.013	0.017	0.041	0.044	0.099	0.13
	代謝物 K	< 0.01	< 0.01	< 0.01	< 0.01	0.034	0.039	0.14	0.15
	代謝物 Q	0.012	0.015	0.031	0.031	0.071	0.081	0.12	0.15
	シアントラニ リプロール	0.014	0.015	0.042	0.066	0.12	0.15	0.51	0.58
	代謝物 D	ND	ND	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 B	0.01	0.012	0.023	0.031	0.082	0.12	0.38	0.45
脂肪	代謝物 C	ND	ND	ND	ND	< 0.01	< 0.01	ND	ND
	代謝物 I	ND							
	代謝物 J	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 K	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物Q	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.012	0.02	0.024

- 休薬期間における残留値-

最終投与	II A HA			残留値(μg/g)		
後日数	化合物	乳汁	筋肉	肝臓	腎臓	脂肪
	シアントラニ リプロール	0.025	<0.01	0.063	0.022	0.013
	代謝物 D	< 0.01	< 0.01	ND	< 0.01	< 0.01
	代謝物 B	< 0.01	< 0.01	< 0.01	0.011	0.14
4	代謝物 C	< 0.01	ND	< 0.01	ND	ND
	代謝物 I	ND	ND	ND	ND	ND
	代謝物 J	< 0.01	< 0.01	0.17	0.043	< 0.01
	代謝物 K	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 Q	0.028	< 0.01	< 0.01	0.012	< 0.01
	シアントラニ リプロール	<0.01	<0.01	<0.01	ND	ND
	代謝物 D	ND	ND	ND	ND	ND
	代謝物 B	ND	< 0.01	< 0.01	< 0.01	0.02
10	代謝物 C	ND	ND	ND	ND	ND
	代謝物 I	ND	ND	ND	ND	ND
	代謝物 J	< 0.01	ND	< 0.01	< 0.01	< 0.01
	代謝物 K	ND	ND	ND	ND	ND
	代謝物 Q	< 0.01	ND	ND	ND	ND
	シアントラニ リプロール	<0.01	<0.01	<0.01	<0.01	<0.01
	代謝物 D	ND	ND	ND	ND	ND
	代謝物 B	ND	ND	< 0.01	< 0.01	< 0.01
15	代謝物 C	ND	ND	ND	ND	ND
	代謝物 I	ND	ND	ND	ND	ND
	代謝物 J	< 0.01	ND	< 0.01	< 0.01	ND
	代謝物 K	ND	ND	< 0.01	ND	ND
	代謝物Q	< 0.01	ND	ND	< 0.01	ND

<別紙6:畜産物残留試験成績(産卵鶏)>

- 卵中残留値-

試料	化合物			残留値	(µg/g)		
武术	16百物	3 mg/k	g 飼料	10 mg/.	kg 飼料	30 mg/	kg 飼料
				最高	寄値		
	シアントラニ リプロール	0.0)82	0.17		0.80	
	代謝物 D	<0	.01	< 0.01		0.016	
	代謝物 B	0.0)39	0.0)77	0.	41
全卵	代謝物 C	<0	.01	<0	.01	<0	.01
	代謝物I	<0	.01	N	D	N	D
	代謝物 J	0.0)16	0.0)38	0.	12
	代謝物 K	0.0)14	0.0)35	0.	10
	代謝物 Q	<0	.01	<0	< 0.01		.01
抄	设 与日	14	21	14	21	14	21
	シアントラニ リプロール	0.098	0.059	0.20	0.14	0.68	0.60
	代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	0.010	< 0.01
	代謝物 B	0.045	0.026	0.078	0.066	0.27	0.27
卵白	代謝物 C	ND	ND	ND	ND	ND	ND
	代謝物I	ND	ND	ND	ND	ND	ND
	代謝物 J	0.015	0.015	0.034	0.033	0.092	0.093
	代謝物 K	0.017	0.014	0.037	0.030	0.10	0.089
	代謝物 Q	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	シアントラニ リプロール	0.017	0.012	0.034	0.023	0.090	0.11
	代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 B	< 0.01	< 0.01	0.018	0.014	0.053	0.062
卵黄	代謝物 C	ND	ND	ND	ND	ND	ND
	代謝物 I	ND	ND	ND	ND	ND	ND
	代謝物 J	< 0.01	< 0.01	0.017	0.016	0.039	0.046
	代謝物 K	< 0.01	< 0.01	0.017	0.012	0.041	0.039
MD 4011.5	代謝物Q	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

- 組織中残留値-

				残留値	(μg/g)		
試料	化合物	3 mg/k	g飼料	10 mg/.	kg 飼料	30 mg/.	kg 飼料
		平均值	最高値	平均値	最高値	平均値	最高値
	シアントラニ リプロール	<0.01	<0.01	<0.01	0.015	0.025	0.05
	代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	0.011	0.015
	代謝物 B	ND	ND	ND	ND	ND	ND
筋肉	代謝物 C	ND	ND	ND	ND	ND	ND
	代謝物 I	ND	ND	ND	ND	ND	ND
	代謝物 J	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 K	< 0.01	< 0.01	0.012	0.013	0.014	0.022
	代謝物 Q	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	シアントラニ リプロール	0.017	0.03	0.041	0.064	0.13	0.24
	代謝物 D	< 0.01	< 0.01	0.028	0.036	0.059	0.083
	代謝物 B	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
肝臓	代謝物 C	< 0.01	< 0.01	< 0.01	0.011	< 0.01	< 0.01
	代謝物 I	ND	ND	ND	ND	ND	ND
	代謝物 J	0.015	0.022	0.043	0.048	0.096	0.099
	代謝物 K	0.023	0.034	0.068	0.096	0.19	0.32
	代謝物 Q	< 0.01	0.012	0.013	0.017	0.045	0.072
	シアントラニ リプロール	<0.01	0.014	0.033	0.058	0.080	0.16
	代謝物 D	< 0.01	< 0.01	< 0.01	0.01	0.015	0.021
山 唐	代謝物 B	< 0.01	< 0.01	< 0.01	< 0.01	0.018	0.023
皮膚 (脂肪付)	代謝物 C	ND	ND	ND	ND	ND	ND
(カロカノナツ))	代謝物 I	ND	ND	ND	ND	ND	ND
	代謝物 J	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	代謝物 K	< 0.01	< 0.01	0.015	0.026	0.027	0.049
	代謝物Q	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

- 休薬期間における残留値(卵) -

化合物	最終投与	最終投与	最終投与	最終投与	最終投与	最終投与
	1日後	3日後	5日後	7日後	10 日後	12 日後
シアントラニリ プロール	0.22	0.010	<0.01	<0.01	<0.01	<0.01
代謝物 D	< 0.01	< 0.01	< 0.01	< 0.01	ND	ND
代謝物 B	0.12	< 0.01	< 0.01	< 0.01	ND	ND
代謝物 C	ND	ND	ND	ND	ND	ND
代謝物 I	ND	ND	ND	ND	ND	ND
代謝物J	0.050	< 0.01	< 0.01	ND	ND	ND
代謝物 K	0.041	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
代謝物 Q	< 0.01	< 0.01	ND	ND	ND	ND

- 休薬期間における残留値(組織) -

最終投与	II & Athra	残留値(μg/g)			
後日数	化合物	筋肉	肝臓	皮膚 (脂肪付)	
	シアントラニ リプロール	<0.01	-	<0.01	
	代謝物 D	ND	-	ND	
	代謝物 B	ND	-	ND	
5	代謝物 C	ND	-	ND	
	代謝物 I	ND	-	ND	
	代謝物 J	ND	-	< 0.01	
	代謝物 K	ND	-	< 0.01	
	代謝物 Q	ND	-	ND	
	シアントラニ リプロール	<0.01	<0.01	<0.01	
	代謝物 D	ND	ND	< 0.01	
	代謝物 B	ND	ND	< 0.01	
9	代謝物 C	ND	ND	ND	
	代謝物 I	ND	ND	ND	
	代謝物 J	ND	ND	< 0.01	
	代謝物 K	ND	< 0.01	< 0.01	
	代謝物 Q	ND	ND	ND	
14	シアントラニ リプロール	<0.01	<0.01	<0.01	
	代謝物 D	ND	ND	ND	
	代謝物 B	ND	ND	< 0.01	
	代謝物 C	ND	ND	ND	
	代謝物 I	ND	ND	ND	
	代謝物 J	ND	< 0.01	ND	
	代謝物 K	ND	ND	ND	
	代謝物 Q	ND	ND	ND	

ND: 検出されず、定量限界: 0.01 µg/g、-: 分析されず

<別紙7:推定摂取量>

(2) 1/12/	:推足贷		亚松	小旧 (1	~6 告)	<i>\</i> +T.	. <i>t</i> ,⊒,	古龄耂 (CE 告いし)	
	残留値		国民平均 体重:55.1 kg)		小児(1~6 歳) (体重:16.5 kg)		妊婦 (体重:58.5 kg)		高齢者(65 歳以上) (体重:56.1 kg)	
農畜産物名	(mg/kg)	ff	摂取量	ff	摂取量	ff	摂取量	ff	摂取量	
	(8/8/	(g/人/日)	(µg/人/日)	(g/人/日)	(µg/人/日)	(g/人/日)	(μg/人/日)	(g/人/日)	(μg/人/日)	
だいこん類 (根)	0.02	33	0.66	11.4	0.23	20.6	0.41	45.7	0.91	
だいこん類 (葉)	5.16	1.7	8.77	0.6	3.10	3.1	16.0	2.8	14.5	
はくさい	0.80	17.7	14.2	5.1	4.08	16.6	13.3	21.6	17.3	
キャベツ	0.32	24.1	7.71	11.6	3.71	19.0	6.08	23.8	7.62	
ブロッコリ	0.82	5.2	4.26	3.3	2.71	5.5	4.51	5.7	4.67	
その他のあ ぶらな科野 菜	0.92	3.4	3.13	0.6	0.55	0.8	0.74	4.8	4.42	
レタス	4.29	9.6	41.2	4.4	18.9	11.4	48.9	9.2	39.5	
アスパラガ ス	0.06	1.7	0.10	0.7	0.04	1.0	0.06	2.5	0.15	
にんじん	0.02	18.8	0.38	14.1	0.28	22.5	0.45	18.7	0.37	
トマト	0.2	32.1	6.42	19.0	3.80	32.0	6.40	36.6	7.32	
ピーマン	0.51	4.8	2.45	2.2	1.12	7.6	3.88	4.9	2.50	
なす	0.24	12.0	2.88	2.1	0.50	10.0	2.40	17.1	4.10	
きゅうり	0.1	20.7	2.07	9.6	0.96	14.2	1.42	25.6	2.56	
えだまめ	0.64	1.7	1.09	1.0	0.64	0.6	0.38	2.7	1.73	
みかん	0.02	17.8	0.36	16.4	0.33	0.6	0.01	26.2	0.52	
なつみかん の果実全体	0.2	1.3	0.26	0.7	0.14	4.8	0.96	2.1	0.42	
その他のか んきつ類果 実	0.28	5.9	1.65	2.7	0.76	2.5	0.70	9.5	2.66	
りんご	0.18	24.2	4.36	30.9	5.56	18.8	3.38	32.4	5.83	
日本なし	0.39	6.4	2.50	3.4	1.33	9.1	3.55	7.8	3.04	
もも	0.03	3.4	0.10	3.7	0.11	5.3	0.16	4.4	0.13	
ネクタリン	0.45	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	
あんず	0.42	0.2	0.08	0.1	0.04	0.1	0.04	0.4	0.17	
すもも	0.2	1.1	0.22	0.7	0.14	0.6	0.12	1.1	0.22	
うめ	1.13	1.4	1.58	0.3	0.34	0.6	0.68	1.8	2.03	
おうとう	0.43	0.4	0.17	0.7	0.30	0.1	0.04	0.3	0.13	
いちご	0.47	5.4	2.54	7.8	3.67	5.2	2.44	5.9	2.77	
ぶどう	1.00	8.7	8.70	8.2	8.20	20.2	20.2	9.0	9.00	
茶	20.6	6.6	136	1.0	20.6	3.7	76.2	9.4	194	
その他のス パイス	1.13	0.1	0.11	0.1	0.11	0.1	0.11	0.2	0.23	
牛・筋肉と 脂肪	0.015	15.3	0.23	9.7	0.15	20.9	0.31	9.9	0.15	

牛・肝臓	0.066	0.1	0.01	0.0	0.00	1.4	0.09	0.0	0.00
牛・腎臓	0.031	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
鶏・肝臓	0.03	0.7	0.02	0.5	0.02	0.0	0.00	0.8	0.02
鶏・その他 の食用部分	0.014	1.9	0.03	1.2	0.02	2.9	0.04	1.4	0.02
乳	0.03	264	7.92	332	9.92	365	11.0	216	6.48
鶏卵	0.082	41.3	3.39	32.8	2.69	47.8	3.92	37.7	3.09
合計			265		95.1		229		338

- 注)・残留値は、登録又は申請されている使用時期・使用回数によるシアントラニリプロールの平均値 の最大値を用いた。(参照 別紙3)。
 - ・ 畜産物の残留値は、飼料として利用される作物におけるシアントラニリプロールの残留量を考慮 し、畜産物残留試験の最小投与量での最大値を用いた。
 - ・「ff」: 平成 $17\sim19$ 年の食品摂取頻度・摂取量調査 (参照 59) の結果に基づく農産物及び畜産物摂取量 $(g/\Lambda/\Pi)$
 - ・「摂取量」: 残留値並びに農産物及び畜産物残留量から求めたシアントラニリプロールの推定摂取量 ($\mu g/\Lambda/\Pi$)
 - ・水稲、だいず、ばれいしょ、やまのいも、すいか及びメロンについては、全データが定量限界 (0.01 mg/kg) 未満であったため推定摂取量の合計には含まれていない。
 - ・未成熟とうもろこし、かんしょ、カリフラワー、リーフレタス、サラダ菜、ねぎ及びかぼちゃに ついては、農薬の使用量、使用回数が登録・申請された使用方法から逸脱していたため、推定摂 取量の計算には用いなかった。
 - ・「その他のアブラナ科野菜」については、こまつな(茎葉)、みずな(茎葉)及びチンゲンサイ (茎葉)のうち、残留値の高いみずな(茎葉)の値を用いた。
 - ・「その他のかんきつ」については、かぼす及びすだちのうち残留値の高いすだちの値を用いた。
 - 「その他のスパイス」については、みかんの果皮の値を用いた。
 - 「牛・筋肉と脂肪」については、筋肉と脂肪のうち残留値の高い脂肪の値を用いた。
 - ・「鶏・筋肉と脂肪」については、筋肉の値を用いた。
 - ・「鶏・その他の食用部分」については、皮膚(脂肪付)の値を用いた。

<参照>

- 1 農薬抄録 シアントラニリプロール (殺虫剤) (平成 24 年 6 月 13 日作成) : デュポン株式会社、一部公表
- 2 ¹⁴C-DPX-HGW86: 雌雄ラットにおける吸収、分布、代謝および排泄 (GLP 対応): DuPont Haskell Global Centers (米国)、2009 年、未公表
- 3 ¹⁴C-DPX-HGW86: 雌雄ラットにおける反復投与期間中および投与後の分布 (GLP 対応): DuPont Haskell Global Centers (米国)、2009 年、未公表
- 4 Metabolism of [14C] DPX-HGW86 in the lactating goat(GLP 対応): Charles River Laboratories(英国)、2008 年、未公表
- 5 Metabolism of [14C] DPX-HGW86 in the laying hen (GLP 対応) (GLP 対応) : Charles River Laboratories (英国) 、2008 年、未公表
- 6 イネにおける[14C] DPX-HGW86 (シアントラニリプロール)の代謝 (GLP 対応): Charles River Laboratories (英国)、2008 年、未公表
- 7 [14C]-DPX-HGW86 の棉における代謝試験(GLP 対応): Charles River Laboratories (英国)、2008年、未公表
- 8 [14C]DPX-HGW86 のトマトにおける代謝(GLP 対応): Charles River Laboratories(英国)、2008年、未公表
- 9 [14C]DPX-HGW86 のレタスにおける代謝(GLP 対応): Charles River Laboratories(英国)、2008年、未公表
- 10 好気的湛水土壌における[¹⁴C]-DPX-HGW86 の運命(GLP 対応): Charles River Laboratories(英国)、2010 年、未公表
- 11 2種の好気的土壌における[¹⁴C]-DPX-HGW86 の分解経路及び吸着 (GLP 対応): DuPont Haskell Laboratory (米国)、2006 年、未公表
- 12 [¹⁴C]-DPX-HGW86 の嫌気的土壌代謝(GLP 対応): Charles River Laboratories (英国)、2006 年、未公表
- 13 [¹⁴C]-DPX-HGW86: 5 種の土壌におけるバッチ平衡法による吸着/脱着の測定 (GLP 対応): Charles River Laboratories (英国)、2007 年、未公表
- 14 DPX-HGW86 の土壌吸着係数試験(GLP 対応): (株)化学分析コンサルタント、 2009 年、未公表
- 15 [¹⁴C]-DPX-HGW86 の pH 4、7 及び 9 緩衝水溶液における加水分解安定性(GLP 対応): Inveresk(英国)、2005 年、未公表
- 16 [¹⁴C]-DPX-HGW86 の pH 4 緩衝液及び自然水における光分解運命試験(GLP 対応): Charles River Laboratories(英国)、2007 年、未公表
- 17 土壌残留試験成績:(株)化学分析コンサルタント、2008~2009年、未公表
- 18 作物残留試験成績: 財団法人 残留農薬研究所、(株)化学分析コンサルタント、 2009~2010 年、未公表
- 19 後作物残留試験成績:(株)化学分析コンサルタント、2008~2009年、未公表
- 20 DPX-HGW86:生体機能への影響に関する試験(GLP 対応): 財団法人 残留農

- 薬研究所、2009年、未公表
- 21 シアントラニリプロール(DPX-HGW86)原体: ラットにおけるアップダウン法 による急性経口毒性試験(GLP 対応): Eurofins PSL(米国)、2010 年、未公 表
- 22 DPX-HGW86 原体: ラットにおける急性経皮毒性試験(GLP 対応): DuPont Haskell Global Centers (米国)、2008 年、未公表
- 23 アルビノラットにおける DPX-HGW86 原体の急性吸入毒性試験(GLP 対応): WIL Research Laboratories, LLC(米国)、2009 年、未公表
- 24 IN-JSE76: ラットにおけるアップダウン法による急性経口毒性試験(GLP 対応): Eurofins Product Safety Laboratories(米国)、2009 年、未公表
- 25 DPX-HGW86 原体: ラットを用いた急性経口神経毒性試験 (GLP 対応): DuPont Haskell Global Centers (米国)、2006 年、未公表
- 26 シアントラニリプロール (DPX-HGW86) 原体: ウサギにおける皮膚一次刺激性 試験 (GLP 対応): Eurofins Product Safety Laboratories (米国)、2010 年、未公表
- 27 シアントラニリプロール (DPX-HGW86) 原体: ウサギにおける眼一次刺激性試験 (GLP 対応): Eurofins Product Safety Laboratories (米国)、2010 年、未公表
- 28 DPX-HGW86 原体のモルモットを用いた皮膚感作性試験(Maximization Test 法) (GLP 対応): (株)ボゾリサーチセンター、2011 年、未公表
- 29 DPX-HGW86 Technical: Repeated Dose Oral Toxicity, 28-Day Feeding Study in Rats: DuPont Haskell Global Centers (米国)、2009 年、未公表
- 30 DPX-HGW86 原体: ラットを用いた 90 日間混餌投与亜慢性毒性試験 (GLP 対応): : DuPont Haskell Global Centers (米国)、2007年、未公表
- 31 DPX-HGW86 Technical: Repeated Dose Oral Toxicity, 28-Day Feeding Study in Mice: DuPont Haskell Global Centers (米国)、2009年、未公表
- 32 DPX-HGW86 原体:マウスにおける混餌投与による 90 日間亜急性毒性試験: DuPont Haskell Global Centers (米国)、2007 年、未公表
- 33 DPX-HGW86: 28-Day Oral Palatability Study in Dogs : MPI Research, Inc. (米国)、2007年、未公表
- 34 DPX-HGW86: イヌにおける 90 日間混餌毒性試験 (GLP 対応): MPI Research, Inc. (米国)、2007 年、未公表
- 35 DPX-HGW86 原体: ラットにおける亜急性経口神経毒性試験(GLP 対応): DuPont Haskell Global Centers (米国)、2009 年、未公表
- 36 シアントラニリプロール原体 (DPX-HGW86 市販用バッチ-412) : ラットにおける 2 年間混餌投与による慢性毒性/発がん性併合試験 (GLP 対応): MPI Research, Inc. (米国)、2011 年、未公表
- 37 シアントラニリプロール原体(DPX-HGW86 市販用バッチ-412):マウスにおけ

- る 18 カ月間混餌投与による発がん性試験(GLP 対応): MPI Research, Inc. (米国)、2011 年、未公表
- 38 DPX-HGW86 原体: イヌにおける混餌投与による 1 年間慢性毒性試験(GLP 対応): MPI Research, Inc. (米国)、2010 年、未公表
- 39 DPX-HGW86 原体:イヌにおける混餌投与による 1 年間慢性毒性試験における NOAEL の根拠(GLP 対応): MPI Research, Inc. (米国)、2012 年、未公表
- 40 DPX-HGW86 原体: ラットにおける経口(混餌)投与による二世代繁殖毒性試験(一世代一同腹児)(GLP 対応): Charles River Laboratories(米国)、2011 年、未公表
- 41 DPX-HGW86 原体: ラットにおける発生毒性試験 (GLP 対応): DuPont Haskell Global Centers(米国)、2009 年、未公表
- 42 DPX-HGW86 原体: ウサギにおける発生毒性試験 (GLP 対応): DuPont Haskell Global Centers(米国)、2009 年、未公表
- 43 シアントラニリプロール (DPX-HGW86) 原体:細菌を用いた復帰突然変異試験 (GLP 対応): BioReliance (米国)、2010年、未公表
- 44 シアントラニリプロール (DPX-HGW86) 原体: in vitro における哺乳動物細胞を用いた染色体異常試験 (GLP 対応): BioReliance (米国)、2010 年、未公表
- 45 シアントラニリプロール (DPX-HGW86) 原体:マウス骨髄を用いた小核試験 (GLP 対応): DuPont Haskell Global Centers (米国)、2011 年、未公表
- 46 IN-JSE76: 細菌を用いた復帰突然変異試験 (GLP 対応): BioReliance (米国)、 2009 年、未公表
- 47 Cyantraniliprole (DPX-HGW86) Technical: Adrenal and Thyroid Mechanistic: 90-Day Feeding Study in Rats(GLP 対応): DuPont Haskell Global Centers (米国)、2010年、未公表
- 48 Cyantraniliprole (DPX-HGW86) Technical: In Vitro Thyroid Peroxidase Inhibition (GLP 対応): DuPont Haskell Global Centers(米国)、2010 年、未公表
- 49 Cyantraniliprole (DPX-HGW86) Technical: Adrenal Mechanistic Study 90-Day Feeding Study in Mice (GLP 対応): DuPont Haskell Global Centers (米国)、2010年、未公表
- 50 Cyantraniliprole (DPX-HGW86) Technical: 28-Day Immunotoxicity Feeding Study in Rats (GLP 対応) : DuPont Haskell Global Centers (米国) 、2009 年、未公表
- 51 Cyantraniliprole (DPX-HGW86) Technical: 28-Day Immunotoxicity Feeding Study in Mice (GLP 対応): DuPont Haskell Global Centers(米国)、2009年、未公表
- 52 食品健康影響評価について (平成 25 年 1 月 30 日付、厚生労働省発食安 0130 第 2 号)

- 53 国民栄養の現状 平成 10 年国民栄養調査結果 : 健康・栄養情報協会編、2000 年
- 54 国民栄養の現状 平成 11 年国民栄養調査結果 : 健康・栄養情報協会編、2001 年
- 55 国民栄養の現状 平成 12 年国民栄養調査結果 : 健康・栄養情報協会編、2002 年
- 56 シアントラニリプロール:残留基準値設定資料(平成 25 年 5 月 22 日作成):デュポン株式会社、未公表
- 57 食品健康影響評価の結果の通知について(平成25年8月26日付け府食第695号)
- 58 食品、添加物等の規格基準(昭和34年厚生省告示370号)の一部を改正する件(平成26年10月3日付け厚生労働省告示第390号)について
- 59 平成 17~19 年の食品摂取頻度・摂取量調査(薬事・食品衛生審議会食品衛生分科 会農薬・動物用医薬品部会資料、2014 年 2 月 20 日)
- 60 食品健康影響評価について(平成 29 年 2 月 13 日付け厚生労働省発生食 0213 第 1 号)
- 61 農薬抄録 シアントラニリプロール (殺虫剤) (平成 28 年 10 月 12 日改訂) : デュポン・プロダクション・アグリサイエンス株式会社、一部公表
- 62 シアントラニリプロールの作物残留試験成績(GLP対応): デュポン・プロダクション・アグリサイエンス株式会社、2017年、未公表
- 63 JMPR ①: "CYANTRANILIPROLE", Pesticide residues in food 2013. Evaluations Part I. Residues. p.361-610 (2013)
- 64 JMPR ②: "CYANTRANILIPROLE", Pesticide residues in food 2013. Evaluations Part II.Toxicological. p.131-183 (2013)
- 65 JMPR③: "CYANTRANILIPROLE", Pesticide residues in food 2013. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. p.97-127 (2013)
- 66 JMPR4: "CYANTRANILIPROLE", Pesticide residues in food 2015. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. p.96-102 (2015)
- 67 EFSA: Conclusion on peer review of the pesticide risk assessment of the active substance cyantraniliprole(2014)
- 68 US EPA: Cyantraniliprole. Aggregate Human Risk Assessment for the Proposed New Uses of the New Active Insecticide, including Agricultural Uses on *Brassica* (Cole) Leafy Vegetable (Group 5), Bulb Vegetables (Group3-07), Bushberries (Group 13-07B), Citrus Fruit (Group 10-10), Cotton, Cucurbit Vegetables (Group 9), Fruiting Vegetables (Group 8-10), Leafy Vegetables

(non-Brassica) (Group 4), Oilseeds (Group 20), Pome Fruite (Group 11-10), Stone Fruits (Group 12), Tree Nuts (Group 14), Tuberous and Corm Vegetables (Subgroup 1C); Seed Treatment Uses on Canola (Rapeseed), Mustard Seed, Sunflowers, and Potatoes; and Residential, Commercial, and Agricultural Uses on Ornamentals, Turfgrass (including Sod Farms and Golf Courses), and Structural Building (including Indoor Crack/Crevice and Outdoor Broadcast). (2013)