薬剤耐性ワンヘルス動向調査年次報告書

2023

Nippon AMR One Health Report (NAOR) 2023

令和6年4月5日 薬剤耐性ワンヘルス動向調査検討会

目 次

1.	前又	1
2.	略称	2
3.	抗菌薬・抗菌剤の種類と略号	4
4.	要旨	8
5.	アクションプランの成果指標	12
6.	日本における耐性菌の現状	16
(1	1)ヒト	16
,	 グラム陰性菌 	16
	② グラム陽性菌	
	③ 薬剤耐性菌感染症	
	④ その他の耐性菌	
	(5) Mycobacterium tuberculosis	
	⑥ Clostridioides difficile 感染症	42
	(7) 院内感染症の発生状況	
	8 病院における感染診療・感染対策・疾病負荷に関する調査	
	⑨ 療養病床および高齢者施設における感染症および抗菌薬使用に関する調査	
(2	2)動物	
,	(1) 家畜由来細菌	
	② 養殖水産分野	66
	③ 愛玩動物	69
	④ 野生動物	77
(3	3)食品	81
(4	1)環境	82
	① 厚生労働省科学研究費課題成果	82
	② 環境研究総合推進費課題成果(令和2年度~令和4年度)	84
7.	日本における抗菌薬使用量の現状	88
(1	l)ヒト用抗菌薬	88
	① 日本全体の抗菌薬使用状況	88
	② 院内の注射用抗菌薬の使用状況	96
(2	2)動物用医薬品	99
	① 畜産動物	101
	② 水産動物	102
	③ 愛玩動物	103
(3	3)抗菌性飼料添加物	105
(4	1)農薬	106

(5)日本における抗菌薬使用の現状	107
(6)抗菌薬適正使用についての研究	111
(7)動物用抗菌剤の慎重使用についての研究	115
(8) 環境	116
8. 日本における薬剤耐性に関する国民意識	117
(1) 一般国民への調査	117
① 国民を対象とした意識調査	117
② 20-30 歳代の抗菌薬の捉え方・受療行動に関する調査	119
(2) 医療関係者への調査	120
① 診療所医師を対象とした意識調査	
③ 薬学部教育における感染症・抗菌薬に関する研究	
(3) 獣医学生への調査	122
9. 今後の展望	124
参考資料	126
(1) 院内感染対策サーベイランス事業(JANIS)	126
① 概要	126
② 届出方法	126
③ 今後の展望	127
(2)感染症発生動向調査事業(NESID)	128
① 概要	128
② 届出基準	128
③ 体制	130
④ 今後の展望	130
(3)感染対策連携共通プラットフォーム(J-SIPHE)	131
① 概要	131
② 体制	131
③ 今後の展望	131
(4)耐性結核菌の動向調査	132
① 概要	132
② 調査方法	132
③ 体制	132
④ 今後の展望	132
(5)動物由来薬剤耐性菌モニタリング(JVARM)	133
① 概要	133
② 薬剤耐性調査実施体制	
③ 抗菌剤販売量調査体制	
④ 今後の展望	138
(6)日本の抗菌薬動向調査(JSAC、J-SIPHE)	139
① 概要	139

② 調査の方法	139
③ 今後の展望	139
(7)ヒト由来 <i>Campylobacter</i> spp.の薬剤耐性状況の調査	140
① 概要	140
② 調査方法	140
③ 今後の展望	140
(8)ヒト及び食品由来の Non-typhoidal <i>Salmonella</i> spp.の薬剤耐性状況の調査	141
① 概要	141
② 調査方法	141
③ 今後の展望	141
(9) <i>Neisseria gonorrhoeae</i> (淋菌)の薬剤耐性状況の調査	142
① 概要	142
② 調査方法	142
③ 今後の展望	142
(10) <i>Salmonella</i> Typhi、 <i>Salmonella</i> Paratyphi A、 <i>Shigella</i> spp. の薬剤耐性状況の調査	≨144
① 概要	144
② 調査方法	144
③ 今後の展望	144
(11) 薬剤耐性(AMR)ワンヘルスプラットフォーム	145
○ 概要	145
主な動向調査のウェブサイト	147
開催要綱	148
本報告書作成の経緯	150

1. 前文

2016 年 4 月に公表された、我が国の「AMR(薬剤耐性)対策アクションプラン(2016-2020)」では、ヒト、動物、食品及び環境等から分離される薬剤耐性菌に関する統合的なワンヘルス動向調査を実施することが明記されていた。この動向調査は AMR の現状を正確に把握し、問題点を抽出し、適切な施策を進める上での重要な戦略と位置づけている。本報告書は、国内におけるヒト、動物、食品及び環境の各分野における薬剤耐性菌及び抗微生物薬使用量(又は販売量)の現状及び動向を把握し、薬剤耐性菌施策の評価を行うとともに課題を明らかにすることを目的に調査結果をまとめたものである。

2023 年には、これまでのアクションプランの成果と経験を基に、新たな「AMR 対策アクションプラン(2023-2027)」が策定された。このプランは、AMR 対策のさらなる強化と推進を目指し、更新された目標と戦略を提案している。AMR 問題へのワンヘルス・アプローチの重要性が再強調され、ヒト、動物、食品、環境の健康が相互に関連していることを考慮に入れた施策の推進が求められている。また、国内外での薬剤耐性と抗微生物薬使用の動向に関するデータ収集と分析の方法論の更新や、AMR 対策のための国際的な協力と共同作業の重要性が強調されている。

本報告書により、我が国の AMR に係るワンヘルス・アプローチの取組を国内外へ示すことが出来、 さらには、AMR に関する対策及び研究を進めるにあたって、関係府省庁、関係諸機関・諸団体、関 係学会等に、本報告書が活用されている。

新たなアクションプランのもとでの今後の取り組みは、日本の AMR 対策のさらなる発展に寄与し、国内外での AMR 問題への効果的な対応を支援することが期待されている。この報告書が提供するデータと分析結果が、国内外の関係者による AMR 対策の強化、新たな研究の推進、および政策策定のための基盤となることを願っている。最終的に、これらの取り組みが、AMR の問題に対してより包括的で効果的なアプローチを実現し、国民の健康と公衆衛生の向上に貢献することができれば幸いである。

2. 略称

AMED Japan Agency for Medical Research and Development

国立研究開発法人日本医療研究開発機構

AMU Antimicrobial Use

抗微生物剤使用量

AMR Antimicrobial Resistance

(抗微生物薬に対する)薬剤耐性

AMRCRC Antimicrobial Resistance Clinical Reference Center

AMR 臨床リファレンスセンター

AUD Antimicrobial Use Density

抗微生物薬使用密度

BP Breakpoint

ブレイクポイント

CDI Clostridioides (Clostridium) difficile Infection

クロストリディオイデス(クロストリジウム)・ディフィシル感染症

CLSI Clinical and Laboratory Standards Institute

米国臨床検査標準委員会

CRE Carbapenem-resistant *Enterobacterales*

カルバペネム耐性腸内細菌目細菌

DID Defined Daily Dose per 1000 Inhabitants per Day

人口 1000 人あたりの 1 日使用

DDD (s) Defined Daily Dose (s)

一日維持投与量

DOT Days of Therapy

抗微生物薬使用日数

DOTID Days of therapy per 1000 Inhabitants per Day

人口 1000 人あたりの 1 日使用

ESBL Extended-spectrum β -lactamase

基質特異性拡張型β-ラクタマーゼ

EUCAST European Committee on Antimicrobial Susceptibility Testing

欧州抗微生物薬感受性試験委員会

FAMIC Food and Agricultural Materials Inspection Center

独立行政法人 農林水産消費安全技術センター

FAO Food and Agricultural Organization of the United Nations

国際連合食糧農業機関

GLASS Global Antimicrobial Resistance and Use Surveillance System

グローバル薬剤耐性及び抗菌薬使用サーベイランスシステム

HAI Healthcare-associated Infection

医療関連感染症

ICU Intensive Care Unit

集中治療室

JANIS Japan Nosocomial Infections Surveillance

院内感染対策サーベイランス事業

JSAC Japan Surveillance of Antimicrobial Consumption

抗菌薬使用サーベイランス

J-SIPHE Japan Surveillance for Infection Prevention and Healthcare Epidemiology

感染対策連携共通プラットフォーム

JVARM Japanese Veterinary Antimicrobial Resistance Monitoring System

動物由来薬剤耐性菌モニタリング

MIC Minimum Inhibitory Concentration

最小発育阻止濃度

MDRA Multidrug-resistant *Acinetobacter* spp.

薬剤耐性アシネトバクター属

MDRP Multidrug-resistant Pseudomonas aeruginosa

薬剤耐性緑膿菌

MRSA Methicillin-resistant Staphylococcus aureus

メチシリン耐性黄色ブドウ球菌

MSSA Methicillin-susceptible Staphylococcus aureus

メチシリン感受性黄色ブドウ球菌

NDB National Database for Prescription and National Health Check-up

匿名医療保険等関連情報データベース

NESID National Epidemiological Surveillance of Infectious Disease

感染症発生動向調査事業

PID Number of patients per 1000 Inhabitants per Day

人口 1000 人あたりの 1 日使用

PPCPs Pharmaceuticals and Personal Products

医薬品及びその関連製品

PRSP Penicillin-resistant Streptococcus pneumoniae

ペニシリン耐性肺炎球菌

SSI Surgical Site Infection

手術部位感染

WHO World Health Organization

世界保健機関

VRE Vancomycin-resistant Enterococci

バンコマイシン耐性腸球菌

WOAH World Organisation for Animal Health

国際獣疫事務局

VRSA Vancomycin-resistant *Staphylococcus aureus*

バンコマイシン耐性黄色ブドウ球菌

DALY (s) Disability-adjusted life year (s)

障害調整生命年

PPS Point Prevalence Survey

点有病率調査

3. 抗菌薬・抗菌剤の種類と略号

		分類	一般名	略号*
			benzylpenicillin (penicillin G)	PCG
			ampicillin	ABPC
			sulbactam/ampicillin	SBT/ABPC
			piperacillin	PIPC
	ペニシ	リン系	oxacillin	MPIPC
			tazobactam/piperacillin	TAZ/PIPC
			amoxicillin	AMPC
			clavulanic acid/amoxicillin	CVA/AMPC
			cefazolin	CEZ
		第1世代	cephalexin	CEX
			cefotiam	СТМ
		AT 0 111 (1)	cefaclor	CCL
		第2世代	cefmetazole	CMZ
			cefoxitin	CFX
	+7		cefotaxime	CTX
	セファロスポリン系		ceftazidime	CAZ
β -			ceftriaxone	CTRX
ラク	ポポ	第 2 世 体	sulbactam/cefoperazone	SBT/CPZ
β-ラクタム系	リン	第3世代	cefdinir	CFDN
系	系		cefcapene pivoxil	CFPN-PI
			cefditoren pivoxil	CDTR-PI
			cefixime	CFIX
			cefepime	CFPM
		第4世代	cefpirome	CPR
			cefozopran	CZOP
		β-ラクタマーゼ阻害薬配合セファロスポリン系	tazobactam/ceftolozane	TAZ/CTLZ
	カファ	マイシン系	cefmetazole	CMZ
	C / /	(122)	cefoxitin	CFX
	オキサ	セフェム系	flomoxef	FMOX
			latamoxef	LMOX
	モノバ	クタム系	aztreonam	AZT
			meropenem	MEPM
			doripenem	DRPM
	カルバ	ペネム系	biapenem	BIPM
	,,,,,,,		imipenem/cilastatin	IPM/CS
			panipenem/betamipron	PAPM/BP
			tebipenem pivoxil	TBPM-PI
	ペネム	系	faropenem	FRPM

分類	一般名	略号*
	sulfamethoxazole-	ST
サルファ剤	trimethoprim	31
	sulfamonomethoxine	SMMX
	erythromycin	EM
 マクロライド系	clarithromycin	CAM
(VIVII)	azithromycin	AZM
	tylosin	TS
ケトライド系	telithromycin	TEL
リンコマイシン系	clindamycin	CLDM
	lincomycin	LCM
「 」ストレプトグラミン系	quinupristin/dalfopristin	QPR/DPR
	virginiamycin	VGM
	minocycline	MINO
 テトラサイクリン系	tetracycline	TC
	doxycycline	DOXY
	oxytetracycline	OTC
	streptomycin	SM
	tobramycin	ТОВ
	gentamicin	GM
 アミノグリコシド系	amikacin	AMK
) ミノクリコントポ	arbekacin	ABK
	kanamycin	KM
	spectinomycin	SPCM
	dihydrostreptomycin	DSM
	© ciprofloxacin	CPFX
	○ levofloxacin	LVFX
	□ lascufloxacin	LSFX
		PZFX
	□ norfloxacin	NFLX
 キノロン系	© prulifloxacin	PUFX
1		MFLX
	© garenoxacin	GRNX
	© sitafloxacin	STFX
	© ofloxacin	OFLX
	© enrofloxacin	ERFX
	oxolinic acid	OA
	nalidixic acid	NA
 グリコペプチド系	vancomycin	VCM
	teicoplanin	TEIC
オキサゾリジノン系	linezolid	LZD
21222221	tedizolid	TZD
ポリペプチド系	polymyxin B	PL-B
	colistin	CL

	bacitracin	ВС
分類	一般名	略号*
リポペプチド系	daptomycin	DAP
アンフェニコール系	chloramphenicol	CP
, フクエーコール示	florfenicol	FF
	fosfomycin	FOM
その他の抗菌薬	salinomycin	SNM
での個の加固米	bicozamycin	BCM
	trimethoprim	TMP
	isoniazid	INH
	ethambutol	EB
抗結核薬	rifampicin (rifampin)	RFP
	pyrazinamide	PZA
	rifabutin	RBT

^{*}日本化学療法学会抗菌化学療法用語集、動物用抗菌剤研究会報 36 (2014) 及び家畜共済における抗菌性物質の使用指針 (2009 年、農林水産省) より引用

【参考】抗微生物薬等については、以下の様な詳細な定義があるものの、実際の医療では、「抗菌薬」、「抗生物質」、「抗生剤」及び「抗菌剤」の四つの用語は細菌に対して作用する薬剤の総称として互換性をもって使用されている。農林畜産分野では、治療目的に加えて抗菌性飼料添加物等にも使用されることから、「抗菌剤」や、「抗微生物剤」と表現されることが多い。

抗微生物薬(antimicrobial agents, antimicrobials):微生物(一般に細菌、真菌、ウイルス、寄生虫に大別される)に対する抗微生物活性を持ち、感染症の治療、予防に使用されている薬剤の総称である。ヒトに用いられる抗微生物薬は抗菌薬(細菌に対する抗微生物活性を持つもの)、抗真菌薬、抗ウイルス薬、抗寄生虫薬を含む。

抗菌薬(antibacterial agents):抗微生物薬の中で細菌に対して作用する薬剤の総称として用いられる。

抗生物質(antibiotics):微生物、その他の生活細胞の機能阻止又は抑制する作用(抗菌作用と言われる)を持つ物質であり、厳密には微生物が産出する化学物質を指す。

抗生剤: 抗生物質の抗菌作用を利用した薬剤を指す通称である (抗微生物薬適正使用の手引き (第一版) 参照)

原末換算量(動物用医薬品)、実効力価換算量(抗菌性飼料添加物)、有効成分換算(農薬)、

力価換算した重量ベースの抗菌薬消費量(ヒト): いずれも有効成分重量を指している。動物用医薬品は製造販売業者より販売データを収集しており、原末換算量は販売数量から算出した薬剤の有効成分重量である。その際、製造販売業者は販売した抗菌剤が使用される畜種の割合も推定して提出しており、推定販売量はその畜種別割合に基づき、畜種別の販売量を算出したものである。抗菌性飼料添加物における実効力価換算量、農薬における有効成分換算およびヒトにおける力価換算した重量ベースの抗菌薬消費量も、原末換算量と同様に、有効成分重量を指している。

抗菌薬使用の指標:

- ・AUD: AUD は主に医療機関の使用状況を把握する単位であり、一定期間における抗菌薬の力価総量を WHO で定義された DDD で除した値を在院患者延数で補正した値であり、単位は DDDs/100 bed-days や DDDs/1,000 patient-days 等で示される。
- ・**DOT**: DOT は主に医療機関の使用状況を把握する単位であり、一定期間における抗菌薬の治療日数の合計 (DOTs) を在院患者延数で補正した値であり、単位は DOTs/100 bed-days や DOTs/1,000 patient-days 等で示される。
- **DID** (**DDDs/1,000** inhabitants/day) : DID は主に地域や国における使用状況を把握する単位である。DID は、一定期間における力価総量を DDD で除し、分母を 1 日あたりの地域住民数 (inhabitants) で補正した値として住民 1,000 人当たりで示される。
- ・DOTID (DOTs/1,000 inhabitants/day) :DOTID は保険請求情報を用いて地域や国における使用状況を把握する単位である。一定期間における抗菌薬の治療日数の合計 (DOTs) を分子に、分母を1日あたりの地域住民数で補正した値として住民1,000人当たりで示される。
- ・PID (number of patients/1,000 inhabitants/day) :PID は保険請求情報を用いて地域や 国における使用状況を把握する単位である。一定期間における抗菌薬の使用人数の合計を 分子に、分母を1日あたりの地域住民数で補正した値として住民1,000人当たりで示される。

4. 要旨

背 景:

我が国の「AMR 対策アクションプラン(2016-2020)」において、ヒト、動物、農業、食品及び環境の各分野において薬剤耐性菌及び抗菌薬使用の現状及び動向の把握は、現状の施策の評価及び今後の施策を検討する上で重要な戦略の一つと位置づけていた。

2023 年には「AMR 対策アクションプラン(2023-2027)」が策定され、更新された目標と戦略が設定された。このプランでは、AMR 問題へのワンヘルス・アプローチの重要性が再強調され、ヒト、動物、環境の健康が相互に関連していることを考慮に入れた施策の推進が求められている。また、AMR 対策のための国際的な協力と共同作業の重要性が強調されている。

国際的に、日本は世界保健機関(WHO)が構築したグローバル薬剤耐性及び抗菌薬使用サーベイランスシステム(GLASS)にデータを提出し、協力している。また、国際獣疫事務局(WOAH)においては、統一された手法による動物における抗菌剤の使用量のモニタリングを行い、我が国はこの取り組みに協力し、データを提出している。

このように、我が国の現状及び動向を把握し国内外に向けて発信することは、国際社会における我が国の位置を再確認するとともに、国際的にも AMR に関する施策を推進する上で重要である。この報告書が提供するデータと分析結果が、国内外の関係者による AMR 対策の強化、新たな研究の推進、および政策策定のための基盤となることを目指している。

方 法:

本報告書は、ヒト、動物、食品及び環境の有識者によって構成された薬剤耐性ワンヘルス動向調査検討会において、動向調査や研究等における情報を検討したものである。ヒト・医療分野の主要な病原細菌における薬剤耐性率は、厚生労働省の院内感染対策サーベイランス事業(JANIS)などから、動物由来細菌における主な薬剤に対する耐性率と動物における抗菌薬の販売量に関しては、農林水産省の動物由来薬剤耐性菌モニタリング(JVARM)から情報を得た。また、ヒトにおける抗菌薬の販売量・使用状況は IQVIA ソリューションズジャパン株式会社、匿名医療保険等関連情報データベース(NDB)及び感染対策連携共通プラットフォーム(J-SIPHE)から、動物における抗菌薬の販売量は農林水産省動物医薬品検査所から、抗菌性飼料添加物の流通量は独立行政法人農林水産消費安全技術センター(FAMIC)及び一般社団法人日本科学飼料協会から、農薬として用いられている抗菌剤の国内出荷量は農林水産省から、感染症の発生状況、感染対策の実施状況等については、感染症発生動向調査事業(NESID)、JANIS および J-SIPHE から情報を得た。

既存の動向調査等では調べられていないが、公衆衛生の観点から重要と考えられる微生物の薬剤耐性や、国民の AMR に対する認知度等に関しては、厚生労働科学研究班等の検討結果を利用した。また、動物分野では、8 大学の獣医学生に対して行われた薬剤耐性に関する意識調査の結果を利用した。

結果:

近年、世界各国で、ヒト分野においては、腸内細菌目細菌、特に大腸菌と肺炎桿菌でカルバペネムへの耐性率の増加が問題となっているが、日本では、これらの耐性率は1%未満で推移している。日本では大腸菌における第3世代セファロスポリン系薬及びフルオロキノロン系薬への耐性率は増加傾向にあったが、2021年は初めて微減となり、2022年は横ばいおよび減少を示した。一方、肺炎桿菌の第3世代セファロスポリン系薬の耐性率は依然として増加傾向を示した。緑膿菌のカルバペネム耐性は2014年に判定基準が変更されているが、耐性率としては減少傾向にある。腸球菌属では、国際

的にはバンコマイシン耐性の増加が問題となっている。日本では Enterococcus faecium のバンコマイシン(VCM)耐性率は海外に比較して比較的低い水準にあるものの、2022 年は 2.6%と増加傾向にあり、一部の地域で VCM 耐性 E. faecium による多施設が関連する広域な病院内アウトブレイクが認められている。

また、メチシリン耐性黄色ブドウ球菌(MRSA)の割合は 2019 年より再上昇の傾向にあったが、2021 年減少に転じた。2022 年も同傾向にあるが、諸外国に比して未だに高い水準にある。食品およびヒト由来のサルモネラ属菌の各血清型において、各種薬剤に対する耐性率のパターンに明瞭な類似性が認められたことから、食品およびヒト由来耐性株間の関連性が強く示唆された。

日本におけるヒト用抗菌薬の販売量に基づいた抗菌薬使用は、2022 年においては、9.78 DID であり、2020 年と比較して、3.9%減少していた。また内服薬は抗菌薬全体の 90.4%を占めており、その内訳では、第 3 世代セファロスポリン系、フルオロキノロン系、マクロライド系の使用比率が高かった。2022 年は使用比率の高い 3 系統の抗菌薬も、2020 年と比較すると、それぞれ 11.9%、8.4%、9.2%減少していた。一方、注射カルバペネム系抗菌薬は 2020 年と比較して 2.9%増加していた。WHO が抗菌薬適正使用の指標として推奨している AWaRe 分類における"Access"の割合は、2013 年から経年的にみると、11.0%から 2020 年は 20.9%、2022 年は 23.8%へと徐々に上昇し、"Watch"の占める割合は 87.6%から 74.9%へと低下していた。

動物分野においては、畜産動物(牛、豚及び鶏)、水産動物(全ての養殖魚種)、愛玩動物(犬及び猫)の薬剤耐性に関する動向調査を実施した結果、ヒト医療上重要な抗菌剤の1つであるカルバペネム系に対する腸内細菌目細菌の耐性率及びヒトの院内感染などで大きな問題となるバンコマイシンに対する腸球菌属菌の耐性率はいずれも0.0%であった。

畜産動物においては、アクションプラン(2016-2020)の成果指標としている健康な畜産動物由来の大腸菌のテトラサイクリン系薬への耐性率は、2014年の45.2%から2015年には39.9%に減少したものの、2016年以降耐性率は増減を繰り返し、2021年は40.7%であった。一方、第3世代セファロスポリン及びフルオロキノロン系の抗菌剤への耐性率は、2014年から2021年の間、概ね10%以下で推移していた。

水産動物においては病魚由来の α 溶血性レンサ球菌症原因菌(Lactococcus garvieae)において、リンコマイシンに対する耐性率は 2017 年に 61.0%、2018 年に 31.5%、2019 年には 55.2%、2020 年に 53.8%、2021 年には 66.2%で推移した。エリスロマイシン及びオキシテトラサイクリンに対する耐性率は 2021 年にはそれぞれ 14.5%及び 1.0%であり、いずれも低値で維持されていたが、前者では 2020 年の 0.6%から増加傾向にあった。健康な養殖ぶり由来のビブリオ及び α 溶血性レンサ球菌症原因菌について、2021 年から試行的な調査を開始した。

愛玩動物においては、疾病にり患した愛玩動物(犬及び猫)由来の大腸菌について、畜産動物と比較して、テトラサイクリン系やアミノグリコシド系の抗菌剤に対する耐性率は低いものの、ヒト医療上重要なフルオロキノロン系やセファロスポリン系の抗菌剤に対する耐性率が高い傾向が認められた。健康な愛玩動物(犬及び猫)由来の大腸菌については、疾病にり患した愛玩動物(犬及び猫)と比較して、全ての薬剤で低い耐性率を示し、概ね感受性が維持されていることが確認された。

動物用抗菌剤の販売量(畜産動物、水産動物及び愛玩動物への販売量)については、動物用医薬品等取締規則第71条の2に基づき報告された抗生物質及び合成抗菌剤の販売量から、原末換算した量(トン: t)として集計した。2021年も、これまでと同様に最も販売量が多い系統はテトラサイクリン系薬であったが、近年は販売量が減少しており、全体の約4割を下回っている。第3世代セファロスポリン及びフルオロキノロン系薬については、それぞれ全体の0.1%及び1%前後であった。動物

用抗菌剤全体の販売量は 800 t 前後を推移しており、2021 年は 800.9 t と 2020 年の 842.9 t からは 42 t 減少した。系統別ではマクロライド系薬が約 16 t 減少し、これは水産動物用のエリスロマイシンの減少の影響が大きかった。またサルファ剤も約 17 t 減少しており、これは鶏の影響が大きかった。系統別または動物種別にみても 2 t 以上の増加は見られなかった。

2021 年における各分野の販売量などから推計した抗菌薬の使用量(又は販売量)は、ヒト 507.0 t、 畜産動物 598.1 t、水産動物 194.7 t、愛玩動物 8.1 t、抗菌性飼料添加物 211.1 t、農薬 133.2 t、合計 1,652.2 t であった。

考察:

ヒト分野において、2022 年の経口第 3 世代セファロスポリン系薬、経口マクロライド系薬、経口フルオロキノロン系薬を含む経口抗菌薬の販売量に基づく抗菌薬使用は、2020 年から減少傾向が続いていた。MRSA、大腸菌の第 3 世代セファロスポリン系薬及びフルオロキノロン系薬の耐性率がわずかに減少しているが、肺炎桿菌の第 3 世代セファロスポリン系薬の耐性率は増加傾向にあり、今後も注視する必要がある。一方、VCM 耐性 $E.\ faecium$ は、多施設が関連する広域な病院内アウトブレイクが認められ、2022 年に続き高い件数の報告がある。地域における包括的なアウトブレイク対応の継続が求められる。

抗菌薬使用量および薬剤耐性率について、新型コロナウイルス感染症による影響も考慮される。ポストコロナにおいて、多くの国で抗菌薬販売量の増加が認められることから、我が国においても今後の推移を慎重にみていくとともに影響を評価する必要がある。本報告書のデータを考慮し、さらなるAMR対策の推進が必要である。

抗菌薬の適正使用については、抗微生物薬適正使用の手引きを用いて急性気道感染症を中心に抗菌薬の適正使用を推進し、第3世代セファロスポリン、フルオロキノロン、マクロライドの不必要な使用を引き続き削減していく必要がある。2023年11月に、抗微生物薬適正使用の手引きは、入院患者における抗微生物薬適正使用編を加え更新された。本編により病院内での患者予後の改善および抗菌薬適正使用が推進されることが期待される。抗菌薬適正使用の推進においては、適切な抗菌薬を必要なときに使用できることが前提であり、基本的な抗菌薬の安定供給を確保することが重要である。

AMR 対策では、教育啓発活動の強化とモニタリングシステムの活用も重要である。新しいアクションプランでは、地域ごとの耐性菌情報や抗菌薬使用状況の詳細な分析を通じて、効果的な対策の策定が求められている。JANIS、NESID、J-SIPHE や、診療所版 J-SIPHE、薬剤耐性(AMR)ワンヘルスプラットフォームなどのシステムを用い、地域の状況に応じた抗菌薬の選択や感染対策を推進していく必要がある。さらに、抗菌薬適正使用を進める上で、国民および医療従事者に対して様々な手法を用いた教育啓発活動を継続していく必要がある。

動物分野において、ヒト医療上重要な抗菌剤の1つであるカルバペネム系に対する腸内細菌目細菌における耐性率及びヒトの院内感染などで大きな問題となるバンコマイシンに対する腸球菌属菌における耐性率はいずれの畜種及び菌種においても0.0%であった。しかし、2017年から開始した疾病にり患した愛玩動物由来の大腸菌において、第3世代セファロスポリン及びフルオロキノロン系の抗菌薬に対する耐性率が畜産動物由来の大腸菌と比較して高いことが確認された。このため、これまで実施してきた畜産分野の薬剤耐性対策に加え、2020年に作成した愛玩動物における慎重使用の手引きの普及等により愛玩動物分野における薬剤耐性対策を継続・強化していくことが必要である。

アクションプラン(2016-2020)の成果指標である健康な畜産動物由来の大腸菌の第3世代セファロスポリン及びフルオロキノロン系の抗菌薬への耐性率は10%以下で保たれており、目標を達成してい

る状況にあると考えられる。引き続きこれらの薬剤を第 2 次選択薬として慎重に使用するよう獣医師や生産者に啓発していくことが重要である。一方、テトラサイクリンでは目標値よりも高い値となった。テトラサイクリンの販売量は、2018 年以降減少しているが、耐性率に変動がみられなかったことから、引き続き適正かつ慎重な使用の推進を図るとともに、その耐性率の動向を確認していく必要がある。なお、アクションプラン(2023-2027)の成果指標としては、畜種別の課題に沿った精緻な取組の成果が確認できるようアクションプラン(2016-2020)と同じ抗菌剤に対して畜種別の耐性率を設定した。また、新たに畜産分野の動物用抗菌剤の全使用量と第 2 次選択薬の全使用量を成果指標として定めている。

日本の AMR 対策は、国際的な動きとの連携のもとで進められており、より強い国際的連携を図ること、また、ワンヘルスの視点からのアプローチを強化することが、AMR 対策の成功の鍵となる。また、十分な効果がみられていない国民の認識向上と行動変容を促す教育啓発活動の強化、抗菌薬の適切な使用を支援するためのガイドラインの普及、AMR 対策の効果を測定し評価するための監視システムの強化が重要である。

これらの課題に対し新しいアクションプランでは、多様な関係者との連携と国際社会での協力が強調されている。日本の AMR 対策の目標達成に向けて、これらの協力体制の構築と強化が不可欠である。国内外での知見と経験の共有、ヒト、動物、環境のリスクを横断的に評価できる研究の推進により、薬剤耐性問題への効果的な対応を図ることが、今後の AMR 対策の成功に重要である。これらの取り組みは、国内外での AMR 問題への効果的な対応を支援し、日本が国際社会で果たすべき役割を強化することに寄与しうる。AMR の問題に対してより包括的で効果的なアプローチを実現し、国民の健康と公衆衛生の向上を図ることを目標に取り組む必要がある。教育啓発活動については新しいアクションプランでも引き続き政府一体となった普及啓発活動が示されているが、効果的な方法についてさらに検討していくことが重要である。

5. アクションプランの成果指標

ヒトに関するアクションプラン (2016-2020) の成果指標:特定の耐性菌の分離率 (%) *

	2013年	2014年	2015 年	2016年	2017年	2018年	2019 年	2020年	2021 年	2022 年	2020 年 (目標値 [†])
肺炎球菌のペニシリン 非感受性率,髄液検体 §	47.4	47.0	40.5	36.4	29.1	38.3	32.0	33.3	59.5	50.9	15%以下
肺炎球菌のペニシリン 非感受性率,髄液検体 以外 [§]	3.2	2.5	2.7	2.1	2.1	2.2	2.2	3.5	3.4	3.8	
大腸菌のフルオロキノ ロン耐性率	35.5	36.1	38.0	39.3	40.1	40.9	41.4	41.5	40.4	39.6	25%以下
黄色ブドウ球菌のメチ シリン耐性率	51.1	49.1	48.5	47.7	47.7	47.5	47.7	47.5	46.0	45.5	20%以下
緑膿菌のカルバペネム 耐性率(イミペネ ム)	17.1	19.9	18.8	17.9	16.9	16.2	16.2	15.9	15.8	14.8	10%以下
緑膿菌のカルバペネム 耐性率(メロペネ ム)	10.7	14.4	13.1	12.3	11.4	10.9	10.6	10.5	10.3	9.5	10%以下
大腸菌のカルバペネム 耐性率(イミペネ ム)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.04	0.2%以下(同 水準) [¶]
大腸菌のカルバペネム 耐性率(メロペネ ム)	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.2%以下(同 水準) [¶]
肺炎桿菌のカルバペネ ム耐性率 (イミペネ ム)	0.3	0.3	0.3	0.2	0.2	0.3	0.2	0.2	0.2	0.1	0.2%以下(同 水準) ¶
肺炎桿菌のカルバペネ ム耐性率 (メロペネ ム)	0.6	0.6	0.6	0.5	0.4	0.5	0.4	0.4	0.4	0.4	0.2%以下(同 水準) [¶]

^{*}JANIS データより作成。2013 年からは 2 年おきにデータを掲載していたが、2017 年以降は毎年のデータを掲載している。

[†]目標値は、AMR対策アクションプラン文献1より抜粋。2013年との比較。

 $^{^{8}}$ アクションプランにある 2014 年の肺炎球菌のペニシリン非感受性率は、CLSI 2007 の基準に沿ってペニシリンの MIC が 0.125 μ g/mL 以上を耐性としている。しかし、2008 年に CLSI が基準を変更し、髄液検体と髄液以外の検体とで基準が 別になり、それに伴い JANIS でも 2015 年以降髄液検体と髄液以外の検体とで集計を分けて掲載している。また、検体数 は 100 程度(2021 年は 42)であり耐性率の評価には注意が必要である。

[「]AMR 対策アクションプラン(文献 1)には、2014 の大腸菌と肺炎桿菌のカルバペネム耐性率は 0.1%と 0.2%であり、2020 年の耐性率を同水準に維持するとある。

ヒトに関するアクションプラン (2023-2027) の成果指標:特定の耐性菌の分離率 (%) *1

	2020年	2021 年	2022 年	2027 年(目標値 [†])
バンコマイシン耐性腸球菌感染症の罹患数	136	124	-	80 人以下(2019 年時点に維持)
黄色ブドウ球菌のメチシリン耐性率(血液)*2	35.9	35.1	33.9	20%以下
大腸菌のフルオロキノロン耐性率(尿) ^{*3}	35.4	34.6	34.0	30%以下(維持)
緑膿菌のカルバペネム(メロペネム)耐性率(血液)*2	7.1	7.0	6.3	3%以下
大腸菌のカルバペネム(メロペネム)耐性率	0.1	0.1	0.1	0.2%以下⁵
肺炎桿菌のカルバペネム(メロペネム)耐性率	0.4	0.4	0.4	0.2%以下 §

^{**}JANIS データ(一部 AMED 薬剤耐性菌のサーベイランス強化および薬剤耐性菌の総合的な対策推進に関する研究より引用)および感染症発生動向調査事業(NESID, National Epidemiological Surveillance of Infectious Diseases)より作成。

ヒトに関するアクションプラン(2016-2020)の成果指標:抗菌薬使用(DID)†(販売量による検討)

	2013年	2014年	2015 年	2016年	2017年	2018年	2019 年	2020年	2013 年との比較	2020年 (目標値*)
全抗菌薬	14.52	14.08	14.23	14.15	13.36	12.91	12.75	10.18	29.9%減	33%減
経口セファロスポリン系薬	3.91	3.78	3.82	3.68	3.43	3.19	3.02	2.24	42.7%減	50%減
経口フルオロキノロン系薬	2.83	2.83	2.71	2.75	2.57	2.42	2.32	1.66	41.4%減	50%減
経口マクロライド系薬	4.83	4.5	4.59	4.56	4.18	3.96	3.84	2.93	39.4%減	50%減
静注薬	0.9	0.9	0.94	0.96	0.98	0.99	1.01	0.87	3.3%減	20%減

DID: Defined daily dose per 1,000 inhabitants per day 人口 1,000 人あたりの1日使用量。

ヒトに関するアクションプラン(2023-2027)の成果指標:抗菌薬使用(DID) † (販売量による検討)

	2013年	2014年:	2015 年	2016年	2017年	2018年	2019 年	2020年2	2021年	2022 年	2020 年 との比較	2027 年 (目標値*)
全抗菌薬	14.52	14.08	14.23	14.15	13.36	12.91	12.75	10.18	9.77	9.78	3.9%減	15%減
経口第3世代 セファロスポリン系薬	3.54	3.41	3.46	3.32	3.08	2.83	2.63	1.85	1.70	1.63	12.1%減	40%減
経口フルオロキノロン系 薬	2.83	2.83	2.71	2.75	2.57	2.42	2.32	1.66	1.48	1.52	8.4%減	30%減
経口マクロライド系薬	4.83	4.5	4.59	4.56	4.18	3.96	3.84	2.93	2.72	2.66	9.2%減	25%減
静注カルパペネム系薬	0.09	0.08	0.08	0.08	0.08	0.08	0.08	0.07	0.07	0.07	2.9%増	20%減

[†]目標値は、AMR 対策アクションプラン文献 7 より抜粋。2020 年との比較。

^{*2}血流感染症は疾病負荷に大きく寄与し、保菌の影響を除く意図で血液検体とする

^{*3}外来において、薬剤耐性菌が治療に直結する尿路感染症を対象とするため尿検体とする

[§] AMR 対策アクションプラン(文献 1)には、2014 の大腸菌と肺炎桿菌のカルバペネム耐性率は 0.1%と 0.2%であり、2020 年の耐性率を同水準に維持するとある。

^{*}目標値は、 文献1より抜粋。

[†]文献 2,3 から作成。

^{*}目標値は、文献7より抜粋。

[†]文献 2,3 から作成。

動物に関するアクションプラン(2016-2020)の成果指標:特定の耐性菌の分離率(%)

		2014 年*	2015 年*	2016年	2017年	2018年	2019 年	2020年	2021年	2020 年 (目標値**)
大腸菌のテトラ	(農場)	45.2	39.9							
サイクリン耐 性率****	(と畜場)		39.8	47.6	40.8	43.6	44.3	45.0	40.7	33%以下
大腸菌の第3世	(農場)	1.5	0.9							
代セファロスポ リン耐性率****	(と畜場)		0.7	2.4	2.1	1.1	2.1	1.4	1.4	***と同水準
大腸菌のフルオ	(農場)	4.7	3.8							 G7 各国の数値
ロキノロン耐 性率****	(と畜場)		2.7	5.0	4.0	4.7	5.1	5.2	4.2	と同水準

^{*}文献4から作成、一部改変。JVARM「農場における家畜由来細菌の薬剤耐性モニタリング結果」

動物に関するアクションプラン(2023-2027)の成果指標:特定の耐性菌の分離率(%)

		0004 -	2027 年
		2021 年	(目標値 [§])
上明寺の	#	23.8	牛 20%以下
大腸菌の テトラサイクリン耐性率*	豚	52.0	豚 50%以下
アトノリイクリン 心性学・	鶏	46.2	鶏 45%以下
- I III # 0	牛	0.0	牛 1%以下
大腸菌の	豚	2.0	豚 1%以下
第3世代セファロスポリン耐性率*	鶏	2.1	鶏 5%以下
上明芸の	牛	0.0	牛 1%以下
大腸菌の フルオロキノロン耐性率*	豚	2.0	豚 2%以下
ノルカロイノロノ順性率:	鶏	14.5	鶏 15%以下

^{§ 2027}年の目標値は、文献7より抜粋。

動物に関するアクションプラン(2023-2027)の成果指標:抗菌薬使用(t) (販売量)

	2020年	2021年	2027 年(目標値) [†] (対 2020 年比)
畜産分野の動物用抗菌剤の全使用量	626.8	598.1	15%減
畜産分野の第二次選択薬*の全使用量	26.7	27.6	27 t 以下に抑える

^{†2027}年の目標値は文献7より抜粋。

※第3世代セファロスポリン、15員環マクロライド(ツラスロマイシン、ガミスロマイシン)、フルオロキノロン、コリスチン

^{**2020}年の目標値は、文献1より抜粋。

^{***}文献 5 及び 6 参照

^{****}MIC がテトラサイクリンは $16~\mu g/m L$ 、第 $3~\psi C$ 世代セファロスポリンは $4~\mu g/m L$ 、フルオロキノロンは、 $4~\mu g/m L$ 以上を耐性としている。

^{*}MIC がテトラサイクリンは $16~\mu g/m L$ 、第 3~ 世代セファロスポリンは $4~\mu g/m L$ 、フルオロキノロンは $1~\mu g/m L$ 以上を耐性としている。

引用文献

- 1. 国際的に脅威となる感染症対策関係閣僚会議. "AMR 対策アクションプラン (2016-2020) "2016.
- 2. Muraki Y, *et al.* "Japanese antimicrobial consumption surveillance: first report on oral and parenteral antimicrobial consumption in Japan (2009–2013) "J Glob Antimicrob Resist. 2016 Aug 6;7: 19-23.
- 3. AMR 臨床リファレンスセンター. 抗菌薬使用サーベイランス Japan Surveillance of Antimicrobial Consumption (JSAC): https://amrcrc.ncgm.go.jp/surveillance/index.html
- 4. 農林水産省動物医薬品検査所"薬剤耐性菌のモニタリング Monitoring of AMR": https://www.maff.go.jp/nval/yakuzai_yakuzai_p3.html
- 5. NARMS: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/narms-now-integrated-data
- 6. EFSA: https://www.efsa.europa.eu/en
- 7. 国際的に脅威となる感染症対策関係閣僚会議. "AMR 対策アクションプラン(2023-2027)" 2023.

6. 日本における耐性菌の現状

(1)ヒト

① グラム陰性菌

データ元: JANIS

グラム陰性菌での状況としては、近年、世界各国で大腸菌や肺炎桿菌などの腸内細菌目細菌におけるカルバペネム(イミペネム(IPM)、メロペネム(MEPM))の耐性率の増加が問題となっているが、日本では、大腸菌、肺炎桿菌におけるカルバペネム系抗菌薬への耐性率は表1、2に示すように1%未満と低い水準に留まっている。2020年まで増加傾向だった大腸菌におけるセフォタキシム(CTX)などの第3世代セファロスポリン系抗菌薬及びレボフロキサシン(LVFX)などのフルオロキノロン系抗菌薬への耐性率は、2021年に初めて微減となり、2022年は横ばいおよび減少を示した。第3世代セファロスポリン系抗菌薬に対する耐性率の増加はESBL遺伝子を保有する菌の増加を反映していると考えられる。2021年以降の大腸菌の第3世代セファロスポリン系抗菌薬に対する耐性率減少が一過性のものか、あるいは真に減少に転じた結果なのか即断はできない。一方、第3世代セファロスポリン系抗菌薬耐性 Klebsiella pneumoniae は増加傾向が続いており、第3世代セファロスポリン系抗菌薬耐性 Klebsiella pneumoniae は増加傾向が続いており、第3世代セファロスポリン系抗菌薬耐性大腸菌とは異なる挙動を示している。両者ともに今後の動向を引き続き注視する必要がある。

Enterobacter cloacae (表 3) 及び Klebsiella (Enterobacter) aerogenes (表 4) におけるカルバペネム系抗菌薬への耐性率は $1\sim2\%$ 台、緑膿菌 (表 5) 及びアシネトバクター属菌 (表 6) における各種抗菌薬への耐性率は諸外国と同等以下と低い水準を維持している。特にアシネトバクター属菌のカルバペネム耐性率については $1\sim3\%$ 程度と低い水準にある。

i . Escherichia coli

表 1 Escherichia coli の耐性率の推移 (%)

	BP (-2013)	BP (2014-)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
ABPC	32	32	47.6 (116,097)	49.1 (133,330)	49.4 (150,867)	49.2 (170,597)	50.5 (257,065)	51.2 (288,052)	51.7 (307,143)	52.2 (325,553)	52.6 (336,351)	51.9 (337,433)	50.4 (340,248)	49.9 (358.902)
PIPC	128	128	40.1 (119,843)	41.6 (136,978)	42.5 (155,626)	42.5 (175,763)	44.1 (270,452)	44.9 (305,604)	45.2 (327,773)	46.0 (342,066)	46.4 (343,183)	45.6 (339,444)	44.0 (338,450)	43.5 (352,001)
TAZ/ PIPC	4/128	4/128	-	-	2.2 (51,286)	1.7 (89,442)	1.7 (179,722)	1.8 (218,008)	1.7 (241,519)	1.7 (263,131)	3.2 (285,685)	2.8 (290,567)	2.6 (303,907)	2.6 (326,287)
CEZ*	32	8	24.4 (122,803)	26.2 (141,560)	26.9 (161,397)	33.3 (183,542)	35.8 (268,898)	36.8 (303,608)	37.3 (324,109)	38.7 (347,491)	39.0 (361,167)	38.7 (360,415)	37.4 (363,330)	37.2 (379,774)
CMZ	64	64	-	-	-	1.0 (163,342)	0.9 (260,844)	1.0 (300,089)	0.9 (325,296)	0.9 (348,832)	0.9 (365,259)	0.8 (372,259)	0.8 (376,435)	0.7 (398,172)
CTX*	64	4	14.8 (99,543)	16.6 (113,354)	17.8 (124,473)	23.3 (140,186)	24.5 (209,404)	26.0 (230,911)	26.8 (241,843)	27.5 (251,068)	28.3 (257,856)	28.3 (257,134)	26.8 (251,869)	26.8 (258,317)
CAZ*	32	16	5.2 (123,606)	5.2 (142,440)	5.5 (161,163)	9.5 (183,970)	10.8 (275,671)	11.6 (310,281)	12.0 (330,029)	12.4 (352,819)	14.0 (367,538)	13.9 (369,898)	13.0 (372,255)	12.8 (390,324)
CFPM	32	32	-	-	10.9 (81,456)	12.8 (129,606)	15.0 (236,705)	15.8 (273,587)	16.1 (296,143)	16.7 (321,745)	18.1 (337,526)	17.5 (341,664)	16.8 (344,555)	16.2 (362,758)
AZT*	32	16	8.5 (97,906)	9.4 (111,930)	10.2 (126,777)	16.1 (143,046)	17.6 (216,494)	18.4 (239,952)	18.7 (258,193)	19.3 (273,064)	21.0 (283,965)	20.4 (284,169)	19.2 (286,755)	19.1 (301,651)
IPM*	16	4	0.1 (113,820)	0.1 (128,289)	0.1 (146,007)	0.1 (163,181)	0.1 (251,050)	0.1 (284,316)	0.1 (304,633)	0.1 (321,043)	0.1 (328,665)	0.1 (328,031)	0.1 (330,003)	0.04 (342,379)
MEPM*	16	4	-	-	0.1 (95,180)	0.2 (144,913)	0.2 (269,893)	0.2 (317,987)	0.1 (340,687)	0.1 (365,600)	0.1 (379,637)	0.1 (383,513)	0.1 (387,094)	0.1 (407,162)
AMK	64	64	0.2 (123,464)	0.2 (141,114)	0.2 (161,406)	0.2 (184,788)	0.1 (281,641)	0.1 (317,913)	0.1 (339,871)	0.1 (362,591)	0.1 (374,518)	0.1 (378,104)	0.1 (380,774)	0.1 (400,312)
LVFX	8	8	31.4 (117,292)	34.3 (136,253)	35.5 (155,998)	36.1 (178,497)	38.0 (274,687)	39.3 (310,705)	40.1 (336,310)	40.9 (360,329)	41.4 (374,719)	41.5 (379,538)	40.4 (381,447)	39.6 (398,196)

BP の単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。ST 合剤は未集計。-: 調査を実施していない区分。

^{*2013}年までは CLSI 2007 (M100-S17)、2014年以降は CLSI 2012 (M100-S22) に準拠している。

ii . Klebsiella pneumoniae

表 2 Klebsiella pneumoniae の耐性率の推移 (%)

	BP (-2013)	BP (2014-)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
ABPC	32	32	75.9 (65,338)	76.9 (73,078)	77.8 (80,030)	76.3 (90,220)	76.9 (131,700)	76.3 (147,500)	77.4 (152,477)	79.4 (158,654)	80.1 (159,790)	79.7 (157,459)	77.7 (160,188)	77.5 (174,552)
PIPC	128	128	19.7 (67,548)	20.1 (74,878)	24.3 (82,608)	21.9 (91,761)	21.1 (136,347)	21.8 (154,260)	21.8 (161,254)	22.9 (165,430)	24.5 (161,590)	25.1 (156,799)	26.7 (158,472)	27.6 (169,964)
TAZ/ PIPC	4/128	4/128	-	-	2.2 (27,279)	2.0 (46,941)	2.0 (91,503)	2.2 (110,189)	2.2 (118,796)	2.6 (127,778)	3.1 (135,732)	3.2 (136,696)	3.6 (145,033)	3.6 (160,489)
CEZ*	32	8	8.8 (68,481)	9.0 (76,860)	9.1 (85,320)	11.7 (94,875)	12.1 (135,486)	13.1 (152,973)	13.4 (157,849)	14.3 (166,906)	15.2 (170,001)	16.5 (166,842)	18.2 (170,103)	18.8 (183,757)
CMZ	64	64	-	-	-	1.9 (85,749)	1.9 (132,163)	1.7 (152,086)	1.5 (159,375)	1.6 (168,787)	1.5 (172,912)	1.5 (173,615)	1.5 (177,579)	1.4 (193,632)
CTX*	64	4	5.2 (56,236)	5.4 (62,242)-	5.1 (66,654)	8.6 (73,574)	8.0 (107,409)	8.9 (118,057)	8.9 (119,672)	9.4 (122,459)	9.7 (122,241)	11.0 (119,269)	11.7 (117,676)	12.6 (124,914)
CAZ*	32	16	3.4 (68,916)	2.9 (76,961)	2.7 (84,761)	3.8 (94,878)	4.0 (138,191)	4.6 (155,293)	5.0 (160,619)	5.7 (169,097)	6.9 (173,031)	8.6 (171,425)	9.5 (174,262)	10.3 (189,618)
CFPM	32	32	-	-	3.0 (41,143)	3.5 (66,399)	4.0 (119,563)	4.8 (138,737)	5.1 (145,745)	5.8 (156,485)	6.8 (160,502)	7.7 (160,138)	8.5 (163,139)	9.1 (177,866)
AZT*	32	16	4.1 (54,680)	3.7 (60,606)	3.5 (67,253)	5.1 (75,340)	5.3 (110,259)	5.9 (122,600)	6.2 (127,491)	6.7 (133,009)	8.0 (135,631)	9.1 (133,016)	10.2 (134,988)	11.0 (146,557)
IPM*	16	4	0.2 (63,825)	0.2 (70,284)	0.1 (77,193)	0.3 (85,253)	0.3 (126,997)	0.2 (143,813)	0.2 (149,546)	0.3 (154,879)	0.2 (155,242)	0.2 (151,882)	0.2 (154,691)	0.1 (165,377)
MEPM*	16	4	-	-	0.2 (48,190)	0.6 (73,903)	0.6 (135,930)	0.5 (159.623)	0.4 (166,298)	0.5 (175,408)	0.4 (179,042)	0.4 (178,240)	0.4 (182,018)	0.4 (197,801)
AMK	64	64	0.3 (68,995)	0.2 (76,293)	0.2 (84,916)	0.1 (95,643)	0.1 (141,710)	0.1 (159,871)	0.1 (166.081)	0.1 (174,259)	0.1 (176,609)	0.1 (175,742)	0.1 (179,422)	0.1 (194,640)
LVFX	8	8	2.7 (66,466)	2.4 (74,718)	2.5 (83,063)	2.4 (92,993)	2.6 (138,428)	2.7 (156,249)	2.8 (163,688)	3.1 (172,010)	3.4 (175,799)	4.2 (175,200)	4.6 (178,138)	5.2 (192,244)

BPの単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。

^{-:}調査を実施していない区分。

^{*2013} 年までは CLSI 2007(M100-S17)、2014 年以降は CLSI 2012(M100-S22)に準拠している。

iii. Enterobacter spp.

表 3 Enterobacter cloacae の耐性率の推移 (%)

	BP (-2013)	BP (2014-)	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
ABPC	32	32	80.9 (35,849)	79.0 (39,344)	80.2 (55,960)	79.3 (61,667)	79.8 (61,970)	81.2 (64,820)	81.3 (64,723)	81.4 (62,954)	80.4 (62,121)	82.0 (66,059)
PIPC	128	128	20.6 (36,988)	20.0 (39,636)	19.8 (58,039)	20.1 (63,580)	20.8 (64,217)	21.2 (66,020)	21.7 (62,798)	21.6 (60,369)	21.3 (58,758)	21.7 (61,527)
TAZ/ PIPC	4/128	4/128	10.3 (11,895)	8.6 (21,091)	8.9 (40,315)	8.9 (47,390)	9.4 (48,775)	9.8 (52,186)	10.5 (54,305)	10.3 (54,675)	10.1 (56,350)	10.6 (59,998)
CEZ*	32	8	97.2 (37,359)	98.2 (41,422)	98.3 (58,637)	98.3 (64,634)	98.3 (64,693)	98.3 (68,017)	98.2 (68,074)	98.2 (67,036)	98.2 (66,201)	98.3 (69,693)
CMZ**	-	64	-	83.4 (37,492)	85.4 (56,647)	85.5 (63,331)	86.1 (64,158)	88.0 (68,013)	87.4 (68,727)	88.1 (68,183)	87.9 (67,430)	88.1 (71,629)
CTX*	64	4	19.2 (30,106)	31.1 (32,718)	31.6 (46,727)	31.2 (50,311)	32.4 (50,022)	32.9 (51,470)	33.7 (50,606)	34.0 (49,402)	34.1 (47,591)	34.9 (48,848)
CAZ*	32	16	20.6 (37,202)	24.7 (41,456)	25.0 (59,533)	24.9 (65,317)	25.8 (65,027)	26.3 (68,737)	26.8 (69,265)	27.4 (67,922)	27.7 (67,174)	28.5 (71,014)
CFPM	32	32	4.2 (17,900)	4.2 (29,836)	4.2 (52,218)	4.0 (58,298)	4.0 (59,398)	3.9 (64,337)	4.0 (65,211)	3.7 (65,110)	3.5 (64,286)	3.6 (67,964)
AZT*	32	16	16.8 (29,460)	23.8 (33,551)	24.0 (48,570)	23.9 (52,951)	24.3 (53,374)	24.9 (55,988)	26.1 (56,211)	26.3 (55,380)	26.5 (54,810)	27.4 (58,130)
IPM*	16	4	0.4 (34,403)	1.6 (37,396)	1.3 (54,926)	1.2 (60,602)	1.1 (60,689)	1.1 (63,611)	1.2 (61,918)	1.0 (61,234)	0.9 (59,721)	0.9 (62,027)
MEPM*	16	4	0.6 (21,164)	1.3 (32,589)	1.4 (59,009)	1.2 (67,250)	1.1 (67,392)	1.1 (71,119)	0.9 (71,548)	1.0 (70,910)	0.8 (70,077)	0.7 (74,210)
AMK	64	64	0.4 (37,947)	0.2 (42,005)	0.2 (61,086)	0.1 (67,133)	0.1 (67,125)	0.1 (70,659)	0.1 (70,392)	0.1 (69,812)	0.1 (68,955)	0.1 (73,178)
LVFX	8	8	4.2 (37,274)	3.5 (40,942)	3.7 (59,393)	3.4 (65,161)	3.5 (65,690)	3.2 (69,392)	3.1 (70,034)	2.9 (69,816)	2.6 (68,752)	2.5 (71,907)

BPの単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。-:調査を実施していない区分。

^{*2013}年はCLSI 2007(M100-S17)、2014年以降はCLSI 2012(M100-S22)に準拠している。

表 4 Klebsiella (Enterobacter)* aerogenes の耐性率の推移 (%)

	BP (-2013)	BP (2014-)	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
ABPC	32	32	76.5 (17,362)	77.1 (18,385)	78.9 (26,680)	77.9 (29,228)	79.1 (30,844)	80.3 (32,746)	80.5 (33,621)	80.8 (33,862)	79.6 (35,315)	81.0 (38,564)
PIPC	128	128	14.5 (18,029)	14.5 (18,550)	14.2 (27,189)	15.8 (29,852)	17.1 (31,802)	17.4 (33,048)	18.9 (32,497)	18.6 (32,139)	17.5 (32,962)	17.5 (35,871)
TAZ/PIPC	4/128	4/128	6.3 (5,568)	4.9 (9,568)	4.8 (18,731)	4.8 (21,767)	5.7 (24,082)	6.9 (26,272)	6.9 (28,085)	7.2 (29,124)	7.0 (30,954)	7.4 (34,399)
CEZ**	32	8	90.8 (17,945)	94.0 (19,173)	93.7 (27,526)	94.2 (30,088)	94.5 (31,800)	95.0 (33,996)	94.7 (35,183)	95.1 (35,448)	95.0 (36,851)	94.8 (40,246)
CMZ	64	64	-	84.8 (17,587)	86.8 (26,739)	87.1 (29,681)	88.0 (31,915)	89.1 (34,051)	89.5 (35,408)	89.9 (36,068)	90.0 (37,881)	89.7 (41,502)
CTX**	64	4	5.2 (14,452)	28.3 (15,173)	30.7 (21,985)	31.1 (23,572)	32.9 (24,195)	33.4 (25,493)	34.2 (26,271)	35.4 (26,655)	35.2 (27,111)	35.9 (28,608)
CAZ**	32	16	17.3 (17,992)	24.3 (19,439)	25.2 (27,886)	25.7 (30,388)	26.7 (32,030)	27.8 (34,142)	28.5 (35,487)	29.6 (35,985)	29.7 (37,638)	30.1 (41,161)
CFPM	32	32	1.0 (8,909)	1.2 (13,499)	1.1 (24,302)	1.1 (27,146)	1.3 (29.464)	1.4 (32,216)	1.5 (33,583)	1.4 (34,454)	1.5 (36,047)	1.6 (39,114)
AZT**	32	16	7.5 (14,639)	15.8 (15,846)	17.5 (23,225)	17.5 (25,023)	18.0 (26,772)	19.2 (28,281)	20.2 (29,397)	20.8 (30,056)	20.4 (31,103)	20.8 (34,014)
IPM**	16	4	0.4 (16,881)	1.7 (17,463)	1.9 (25,690)	1.9 (28,307)	1.9 (29,869)	2.6 (31,288)	2.3 (31,645)	2.2 (32,050)	1.7 (33,173)	1.3 (35,870)
MEPM**	16	4	0.2 (10,249)	0.9 (15,003)	0.8 (27,560)	0.8 (31,311)	0.8 (33,150)	0.8 (35,448)	0.8 (36,550)	0.9 (37,291)	0.9 (38,989)	0.9 (42,475)
AMK	64	64	0.2 (18,369)	0.2 (19,492)	0.1 (28,627)	0.1 (31,338)	0.1 (33,074)	0.1 (35,214)	0.1 (36,204)	0.05 (36,866)	0.05 (38,542)	0.04 (41,981)
LVFX	8	8	1.1 (18,111)	1.0 (19,068)	0.9 (28,012)	1.0 (30,451)	0.9 (32,503)	0.9 (34,383)	0.9 (35,735)	0.9 (36.768)	1.0 (38.092)	0.9 (41,329)

BPの単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。-:調査を実施していない区分。

^{*}Enterobacter aerogenes は Klebsiella aerogenes に名称変更された(Int. J. Syst. Evol. Microbiol. 67, 502-504, 2017)。

^{**2013}年はCLSI 2007(M100-S17)、2014年以降はCLSI 2012(M100-S22)に準拠している。

iv. *Pseudomonas aeruginosa*

表 5 Pseudomonas aeruginosa の耐性率の推移 (%)

	BP (-2013)	BP (2014-)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PIPC	128	128	12.1 (114,950)	11.9 (118,032)	11.4 (122,581)	10.8 (125,242)	10.5 (181,977)	10.5 (201,764)	10.3 (205,165)	10.0 (206,858)	10.3 (214,513)	10.0 (211,455)	9.8 (214,729)	9.7 (223,807)
TAZ/ PIPC	4/128	4/128	-	-	9.0 (68,686)	8.8 (79,574)	8.8 (132,769)	8.4 (155,724)	8.3 (165,402)	8.1 (172,748)	8.4 (185,720)	7.8 (185,847)	7.8 (191,294)	7.8 (201,973)
CAZ	32	32	11.3 (116,596)	10.9 (120,473)	10.2 (124,864)	9.5 (126,718)	8.6 (180,479)	8.7 (199,597)	8.6 (202,025)	8.4 (203,554)	8.7 (210,892)	8.6 (207,738)	8.7 (211,983)	8.7 (221,033)
CFPM	32	32	9.7 (91,769)	8.9 (99,730)	8.0 (106,291)	7.5 (113,268)	6.6 (166,096)	6.5 (185,283)	6.3 (191,502)	6.0 (194,385)	5.9 (200,818)	5.7 (198,849)	5.5 (202,904)	5.3 (212,498)
AZT	32	32	16.3 (96,435)	16.7 (100,964)	16.5 (105,681)	14.5 (107,167)	14.0 (146,841)	13.8 (158,737)	13.7 (162,952)	13.1 (162,365)	13.3 (167,331)	13.6 (164,518)	13.4 (166,971)	13.0 (176,832)
IPM*	16	8	19.8 (112,596)	18.5 (116,193)	17.1 (119,979)	19.9 (119,323)	18.8 (168,471)	17.9 (186,380)	16.9 (188,981)	16.2 (188,778)	16.2 (195,183)	15,9 (191,793)	15,8 (194,826)	14.8 (202,639)
MEPM*	16	8	12.4 (109,453)	11.8 (113,996)	10.7 (119,330)	14.4 123,976)	13.1 (180,850)	12.3 (201,991)	11.4 (206,368)	10.9 (209,149)	10.6 (217,161)	10.5 (214,691)	10.3 (218,610)	9.5 (228,253)
GM	16	16	7.0 (111,137)	6.1 (115,612)	5.3 (118,592)	5.1 (117,421)	4.5 (165,777)	4.1 (182,343)	3.3 (184,453)	2.9 (184,135)	3.1 (190,296)	3.0 (184,307)	2.8 (184,581)	2.5 (193,104)
AMK	64	64	3.1 (116,876)	2.6 (121,289)	2.1 (126,023)	1.9 (128,923)	1.5 (185,327)	1.3 (204,892)	1.1 (208,098)	0.9 (209,413)	0.9 (217,512)	0.8 (214,949)	0.7 (219,053)	0.6 (228,023)
LVFX	8	8	16.8 (111,005)	16.3 (115,478)	14.5 (119,162)	13.0 (120,691)	12.0 (174,301)	11.6 (193,366)	10.8 (197,890)	10.2 (199,760)	9.8 (207,963)	9.5 (204,829)	8.9 (207,311)	8.1 (216,226)

BP の単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。

^{-:}調査を実施していない区分。

^{*2013} 年までは CLSI 2007(M100-S17)、2014 年以降は CLSI 2012(M100-S22)に準拠している。

v . Acinetobacter spp.

表 6 Acinetobacter spp.の耐性率の推移 (%)

	BP	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PIPC	128	13.2 (19,125)	13.2 (19,433)	12.9 (20,183)	12.4 (20,223)	11.5 (27,887)	10.9 (29,776)	10.9 (27,468)	10.3 (27,905)	10.7 (26,237)	10.2 (23,018)	11.0 (22,399)	10.8 (22,002)
TAZ/ PIPC	4/128	-	-	7.8 (4,953)	7.8 (5,215)	8.1 (9,058)	8.6 (10,551)	9.0 (10,983)	9.4 (12,171)	9.0 (12,401)	8.2 (11,478)	9.5 (11,275)	9.0 (11,305)
SBT/ ABPC	16/32	6.5 (2,942)	7.2 (3,601)	5.8 (4,498)	5.2 (6,462)	4.8 (11,356)	5,4 (12,831)	4.7 (12,241)	4.4 (13,111)	4.3 (12,769)	3.4 (12,047)	3.6 (11,982)	4.3 (11,708)
CAZ	32	10.3 (19,672)	10.6 (20,067)	10.0 (20,856)	9.3 (20,852)	8.0 (28,166)	7.6 (29,844)	7.9 (27,308)	7.6 (28,077)	8.6 (26,614)	8.4 (23,626)	9.1 (23,064)	9.4 (22,645)
CFPM	32	10.4 (13,013)	10.5 (14,093)	9.2 (15,394)	7.6 (17,424)	7.2 (25,412)	7.4 (27,386)	7.6 (25,631)	6.8 (26,616)	6.8 (25,224)	7.0 (22,400))	7.2 (22,002)	6.9 (21,702)
IPM	16	2.2 (18,048)	2.0 (18,238)	2.3 (16,947)	3.6 (11,147)	3.2 (13,942)	3.1 (15,147)	2.5 (14,383)	2.0 (16,995)	1.8 (19,645)	1.1 (21,381))	1.1 (21,243)	1.0 (20,627)
MEPM	16	2.9 (15,485)	2.4 (15,880)	2.3 (17,027)	2.0 (18,859)	1.8 (28,227)	1.9 (30,489)	1.3 (28,064)	1.5 (29,024)	1.4 (27,418)	1.2 (24,163)	1.2 (23,500)	1.3 (23,196)
GM	16	9.6 (18,276)	10.2 (18,842)	9.5 (19,422)	8.9 (18,832)	8.5 (25,689)	8.5 (27,313)	8.2 (24,887)	7.8 (25,465)	8.0 (23,925)	7.7 (20,853)	8.6 (20,174)	8.1 (19,819)
AMK	64	4.5 (19,348)	4.5 (19,793)	3.5 (20,863)	3.6 (20,851)	3.1 (28,568)	2.3 (30,279)	2.3 (27,835)	2.0 (28,437)	2.1 (26,917)	2.0 (23,697)	2.4 (23,217)	2.4 (22,835)
LVFX	8	9.5 (18,732)	9.8 (19,484)	8.3 (20,040)	8.5 (20,047)	7.7 (27,858)	8.2 (29,702)	8.0 (27,360)	7.0 (28,209)	7.5 (26,898)	7.8 (23,650)	8.7 (22,998)	8.6 (22,546)

BP の単位は μg/mL。 括弧内は薬剤感受性試験を実施した菌株数。-: 調査を実施していない区分。

② グラム陽性菌

データ元: JANIS

グラム陽性菌での状況としては、黄色ブドウ球菌において MRSA の割合が 50%程度であり、近年減少にあるものの、諸外国と比較すると未だに高い水準にある。また、その割合は、200 床未満の医療機関の方が、200 床以上の医療機関よりも高い(表 10)。腸球菌属では、多くの国で VCM 耐性の増加が問題となっているが、日本では、表 11、12 に示す通り Enterococcus faecalis では、0.05%未満、Enterococcus faecium でも 2.6%と海外に比較して比較的低い水準にある。しかし E. faecium では 2021 年に VCM 耐性率が著しく増加し、一部の地域で VCM 耐性 E. faecium による多施設が関連する広域な病院内アウトブレイクが認められた。今後の地域での耐性率の変化を慎重に観察する必要がある。肺炎球菌におけるペニシリンへの耐性率については、髄液検体(表 13)は、検査された検体の総数が 100 検体程度と少ないため、年により耐性率の数値にばらつきがあるが、概ね 40%前後で推移している。髄液以外の検体(表 14)では 1 %未満、中間耐性率を足しても 5 %未満と低い水準で推移している。

i . Staphylococcus aureus

表 7 全 Staphylococcus aureus*耐性率の推移 (%)

•	•		, ,			
	BP	2018	2019	2020	2021	2022
PCG	0.25	75.4 (287,805)	75.1 (295,031)	74.3 (281,583)	73.3 (277,317)	72.8 (288,253)
MPIPC	4	47.8 (266,047)	47.7 (265,763)	47.5 (243,162)	46.0 (237,103)	45.5 (243,386)
CFX	8	46.1 (57,604)	46.0 (64,239)	46.1 (61,811)	45.2 (62,331)	43.6 (65,031)
CEZ	32	20.7 (360,772)	19.7 (366,803)	19.3 (339,052)	17.8 (334,737)	16.2 (346,659)
GM	16	30.4 (345,964)	28.9 (350,425)	27.5 (325,197)	26.1 (317,744)	25.1 (330,361)
EM	8	51.7 (325,918)	51.2 (329,090)	50.5 (302,105)	48.4 (297,317)	46.6 (308,701)
CLDM	4	22.0 (340,953)	20.4 (350,136)	18.9 (325,568)	17.3 (319,298)	15.7 (331,565)
MINO	16	12.2 (377,507)	10.5 (385,264)	9.7 (360,076)	8.9 (353,680)	8.0 (365,963)
VCM	16	0.0 (374,982)	0.0 (382,254)	0.0 (356,747)	0.0 (347,976)	0.0 (358,032)
TEIC	32	<0.05 (336,502)	< 0.05 (340,855)	< 0.05 (314,742)	< 0.05 (308,176)	< 0.05 (318,317)
LVFX	4	50.4 (358,941)	51.7 (368,676)	52.3 (344,943)	51.3 (339,292)	51.3 (349,500)
LZD	8	<0.05 (286,366)	< 0.05 (294,735)	<0.05 (276,069)	<0.05 (268,079)	< 0.05 (277,713)
DAP	2	0.3 (72,401)	0.3 (98,366)	0.3 (108,416)	0.3 (116,811)	0.3 (128,962)

BPの単位は µg/mL。括弧内は薬剤感受性試験を実施した菌株数。

^{*2018}年から集計を開始した。

^{-:}調査を実施していない区分。

表 8 Methicillin-susceptible Staphylococcus aureus (MSSA) 耐性率の推移 (%)

	BP	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PCG	0.25	61.1 (68,839)	60.1 (75,025)	59.0 (82,477)	57.7 (86,314)	56.2 (119,343)	55.0 (126,394)	53.9 (129,943)	52.9 (135,360)	52.1 (138,818)	51.1 (133,767)	50.7 (135,944)	50.2 (143,105)
CEZ	32	0.3 (77,483)	<0.05 (84,520)	0.2 (93,945)	0.2 (103,603)	0.1 (146,254)	<0.05 (157,917)	<0.05 (161,831)	<0.05 (164,909)	< 0.05 (167,084)	<0.05 (155,735)	<0.05 (159,135)	<0.05 (167,376)
CVA/ AMPC	4/8	0.3 (11,696)	0.1 (9,466)	0.2 (11,230)	0.2 (11,666)	0.1 (19,163)	0.1 (21,783)	0.1 (24,713)	0.1 (26,376)	0.1 (25,258)	0.1 (24,967)	0.1 (26,846)	0.1 (28,097)
IPM	16	0.3 (74,636)	<0.05 (80,472)	0.2 (88,422)	0.2 (95,951)	<0.05 (136,878)	<0.05 (146,433)	<0.05 (149,014)	<0.05 (149,454)	< 0.05 (150,811)	<0.05 (138,998)	<0.05 (137,863)	<0.05 (141,411)
EM	8	22.7 (72,738)	23.4 (79,683)	24.0 (88,528)	23.8 (96,829)	22.9 (136,763)	23.3 (146,280)	23.5 (148,795)	23.1 (150,809)	22.7 (151,577)	22.6 (139,415)	21.5 (142,251)	20.5 (149,705)
CLDM	4	3.4 (67,523)	3.1 (74,387)	3.2 (83,914)	2.8 (93,467)	2.8 (136,292)	2.9 (148,439)	2.9 (151,841)	2.7 (155,141)	2.9 (157,700)	3.0 (147,257)	2.9 (150,416)	2.8 (158,285)
MINO	16	0.7 (77,872)	0.6 (84,595)	0.5 (94,425)	0.6 (104,145)	0.6 (151,493)	0.5 (163,214)	0.6 (167,178)	0.6 (169,953)	0.5 (171,857)	0.6 (161,001)	0.6 (164,230)	0.5 (172,471)
LVFX	4	9.3 (73,163)	10.2 (79,857)	10.6 (89,641)	10.7 (99,898)	11.6 (144,083)	12.3 (154,868)	13.1 (159,066)	13.8 (161,691)	14.7 (164,665)	15.5 (154,754)	15.9 (158,287)	16.4 (165,426)

BP の単位は μg/mL。 括弧内は薬剤感受性試験を実施した菌株数。

表 9 Methicillin-resistant Staphylococcus aureus (MRSA) の耐性率の推移 (%)

	BP (2014-)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
EM	8	91.3 (105,936)	90.6 (109,521)	88.4 (108,607)	86.0 (107,836)	84.1 (149,851)	83.8 (155,587)	82.9 (157,708)	81.7 (159,215)	80.7 (161,613)	79.8 (147,736)	78.6 (140,331)	76.8 (143,415)
CLDM	4	76.8 (102,895)	73.5 (106,124)	67.3 (105,503)	60.3 (106,910)	56.0 (153,329)	51.6 (160,500)	46.3 (164,301)	41.7 (169,049)	37.9 (175,081)	35.1 (161,937)	33.1 (153,027)	30.2 (156,646)
MINO	16	48.2 (117,325)	43.7 (120,321)	37.1 (120,300)	35.1 (121,258)	31.7 (173,983)	29.1 (182,306)	27.1 (185,770)	23.7 (189,813)	20.1 (195,422)	18.7 (181,557)	17.7 (172,374)	16.0 (175,443)
VCM	16	0.0 (115,679)	0.0 (119,111)	0.0 (119,441)	0.0 (120,535)	0.0 (172,083)	0.0 (181,288)	0.0 (185,948)	0.0 (189,853)	0.0 (195,332)	0.0 (181,671)	0.0 (171,879)	0.0 (174,187)
TEIC	32	<0.05 (110,380)	<0.05 (113,887)	<0.05 (113,684)	<0.05 (113,749)	<0.05 (158,233)	<0.05 (165,213)	<0.05 (167,342)	<0.05 (169,651)	< 0.05 (173,090)	<0.05 (158,930)	<0.05 (150,589)	<0.05 (153,290)
LVFX	4	89.0 (111,598)	88.3 (114,381)	86.8 (114,551)	85.4 (115,586)	85.2 (164,734)	85.8 (172,494)	86.5 (176,790)	86.8 (179,731)	87.8 (186,442)	88.5 (173,610)	88.9 (164,814)	89.4 (166,997)
LZD*	8	0.1 (76,632)	<0.05 (84,550)	<0.05 (85,223)	<0.05 (88,255)	0.1 (127,278)	<0.05 (136,468)	<0.05 (139,785)	<0.05 (144,332)	< 0.05 (149,340)	<0.05 (137,980)	<0.05 (129,420)	<0.05 (132,000)
DAP	2	-	-	-	1.1 (3,078)	0.9 (16,648)	0,8 (23,217)	0.7 (26,874)	0.5 (35,618)	0.4 (47,835)	0.5 (51,671)	0.5 (53,782)	0.5 (58,616)

BP の単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。

^{-:}調査を実施していない区分。VRSAの報告はない。

^{*2013} 年までは CLSI 2007(M100-S17)、2014 年以降は CLSI 2012(M100-S22)に準拠している。

表 10 MRSA 分離患者の全 Staphylococcus aureus (S. aureus) 分離患者に占める割合 (%)

表 10-1 全集計対象医療機関

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
集計対象医療機関数	594	660	745	883	1,435	1,653	1,795	1,947	2,075	2,167	2,220	2,289
MRSA分離患者数	114,933	117,209	118,539	120,702	169,528	177,768	182,619	185,709	192,320	176,848	167,858	168,718
S. aureus分離患者数	210,382	221,239	231,909	246,030	349,743	372,787	383,006	391,316	400,094	367,976	360,912	370,067
MRSA割合(%)*	54.6	53.0	51.1	49.1	48.5	47.7	47.7	47.5	48.1	48.1	46.5	45.6

表 10-2 200 床以上集計対象医療機関

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
集計対象医療機関数	-	-	-	791	1,177	1,269	1,312	1,334	1,357	1,364	1,378	1,386
MRSA分離患者数	-	-	-	115,757	157,419	160,060	160,714	159,054	161,159	144,828	135,984	135,670
S. aureus分離患者数	-	-	-	237,343	328,540	341,822	344,543	344,156	345,447	312,738	305,116	311,251
MRSA割合(%)*	-	-	-	48.8	47.9	46.8	46.6	46.2	46.7	46.3	44.6	43.6

表 10-3 200 床未満の集計対象医療機関

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
集計対象医療機関数	-	-	-	92	258	384	483	613	718	803	842	903
MRSA分離患者数	-	-	-	4,945	12,109	17,708	21,905	26,655	31,161	32,020	31,874	33,048
S. aureus分離患者数	-	-	-	8,687	21,203	30,965	38,463	47,160	54,647	55,238	55,796	58,816
MRSA割合(%)*	-	-	-	56.9	57.1	57.2	57.0	56.5	57.0	58.0	57.1	56.2

選択培地等で検出された場合も含む。

^{*} MRSA 分離患者数÷全 S. aureus 分離患者数。

⁻ 調査を実施していない区分。

ii . *Enterococcus* spp.

表 11 Enterococcus faecalis の耐性率の推移 (%)

	ВР	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PCG	16	2.2 (53,290)	2.1 (60,342)	1.8 (65,220)	1.6 (67,324)	1.4 (92,132)	1.1 (98,465)	1.0 (98,478)	0.9 (104,023)	0.9 (107,021)	0.9 (111,226)	0.9 (114,014)	0.8 (117,159)
ABPC	16	0.4 (60,686)	0.4 (68,440)	0.3 (72,587)	0.3 (77,997)	0.3 (107,733)	0.2 (115,548)	0.2 (116,493)	0.2 (119,014)	0.2 (121,530)	0.2 (123,238)	0.2 (125,752)	0.2 (129,563)
EM	8	57.8 (53,222)	58.0 (60,825)	57.1 (64,465)	55.5 (69,171)	54.8 (95,409)	54.3 (101,036)	53.8 (101,379)	52.7 (102,496)	51.7 (102,871)	50.2 (103,067)	48.2 (105,505)	46.1 (108,619)
MINO	16	47.8 (61,549)	47.7 (69,421)	47.7 (74,880)	52.1 (81,925)	49.7 (115,648)	48.9 (123,860)	50.3 (125,728)	50.9 (128,160)	47.2 (130,729)	48.1 (133,174)	50.8 (135,820)	51.9 (139,723)
VCM	32	<0.05 (61,747)	<0.05 (69,719)	<0.05 (75,162)	<0.05 (81,867)	<0.05 (115,100)	<0.05 (124,305)	<0.05 (126,510)	<0.05 (129,545)	< 0.05 (132,526)	<0.05 (135,184)	<0.05 (137,887)	<0.05 (142,316)
TEIC	32	<0.05 (56,591)	<0.05 (63,747)	<0.05 (69,500)	<0.05 (76,160)	<0.05 (105,403)	<0.05 (112,636)	<0.05 (113,501)	<0.05 (115,397)	< 0.05 (117,097)	<0.05 (118,367)	<0.05 (120,564)	<0.05 (124,347)
LVFX	8	19.3 (58,877)	18.0 (65,934)	15.5 (70,895)	13.7 (77,563)	12.5 (109,160)	11.9 (117,297)	11.2 (120,136)	10.4 (122,551)	10.1 (125,836)	9.5 (128,449)	9.0 (131,088)	8.3 (134,507)

BP の単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。

表 12 Enterococcus faecium の耐性率の推移 (%)

	BP	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PCG	16	86.9 (17,642)	87.4 (21,139)	87.7 (23,466)	86.9 (24,534)	87.6 (34,752)	88.2 (38,060)	87.8 (39,478)	87.5 (42,178)	87.4 (46,021)	86.9 (49,002)	87.1 (50,976)	87.1 (53,508)
ABPC	16	86.0 (19,780)	86.2 (23,885)	86.9 (26,199)	86.9 (28,564)	87.6 (41,459)	88.0 (45,069)	87.9 (47,046)	87.6 (49,207)	88.0 (52,929)	87.6 (54,632)	87.9 (56,395)	87.7 (59,105)
EM	8	87.2 (17,668)	88.1 (21,498)	85.9 (23,594)	84.5 (25,922)	84.5 (37,536)	84.0 (40,509)	83.1 (42,259)	83.0 (43,555)	83.1 (45,992)	83.1 (47,133)	80.0 (49,083)	79.5 (51,391)
MINO	16	26.9 (21,877)	28.8 (25,961)	29.3 (28,387)	32.2 (31,550)	35.1 (46,351)	34.7 (50,325)	36.2 (52,494)	38.3 (54,540)	33.0 (58,314)	31.7 (60,040)	30.2 (62,137)	31.5 (64,243)
VCM	32	1.0 (21,782)	0.4 (25,787)	0.7 (28,334)	0.7 (30,996)	0.7 (45,514)	0.9 (49,618)	0.8 (52,127)	0.9 (54,279)	1.5 (58,377)	1.4 (60,412)	2.6 (62,811)	2.6 (65,363)
TEIC	32	0.4 (20,163)	0.3 (23,855)	0.2 (26,282)	0.2 (29,151)	0.3 (41,905)	0.6 (45,388)	0.4 (47,321)	0.6 (48,991)	1.0 (52,502)	0.8 (54,125)	1.4 (55,948)	1.5 (58,342)
LVFX	8	82.9 (19,417)	83.4 (23,032)	84.5 (25,629)	84.7 (28,448)	85.8 (42,068)	86.6 (45,834)	86.5 (48.995)	86.7 (51,003)	87.6 (55,293)	86.9 (57,199)	87.2 (59,808)	86.9 (62,209)
LZD	8	0.0 (12,877)	0.1 (16,296)	<0.05 (18,561)	0.1 (22,044)	0.1 (33,382)	0.1 (37,099)	<0.05 (39,584)	0.1 (41.596)	0.1 (44,887)	0.1 (46,611)	0.1 (47,809)	0.1 (49,958)

BP の単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。

iii. Streptococcus pneumoniae

表 13 Streptococcus pneumoniae (髄液検体)の耐性率の推移 (%)

	BP	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PCG	0.125	38.6 (101)	47.4 (97)	47.0 (83)	40.5 (126)	36.4 (140)	29.1 (117)	38.3 (94)	32.0 (100)	33.3 (57)	59.5 (42)	50.9 (57)
СТХ	2	3.7 (82)	1.2 (84)	2.9 (69)	2.0 (100)	1.0 (105)	2.1 (97)	4.5 (88)	1.2 (85)	4.3 (47)	5.6 (36)	4.1 (49)
MEPM	1	4.2 (95)	2.2 (92)	1.2 (83)	4.2 (119)	0.7 (134)	5.0 (120)	2.1 (95)	1.0 (99)	6.0 (50)	6.8 (44)	8.9 (56)
EM	1	82.5 (80)	82.7 (81)	92.5 (67)	84.9 (86)	75.5 (98)	82.4 (91)	75.0 (76)	84.8 (79)	76.7 (43)	86.5 (37)	77.8 (45)
CLDM	1	53.8 (65)	68.7 (67)	65.1 (63)	62.7 83)	61.2 (98)	49.5 (91)	43.7 (71)	64.0 (75)	57.1 (42)	52.8 (36)	57.8 (45)
LVFX	8	0.0 (88)	0.0 (91)	1.3 (76)	0.0 (105)	0.0 (123)	0.9 (111)	2.3 (88)	0.0 (93)	0.0 (50)	0.0 (40)	1.9 (52)
VCM	2	0.0 (91)	0.0 (90)	0.0 (82)	0.0 (119)	0.0 (134)	0.0 (116)	0.0 (98)	0.0 (96)	0.0 (56)	0.0 (42)	0.0 (56)

BP の単位は $\mu g/mL$ 。括弧内は薬剤感受性試験を実施した菌株数。BP は CLSI 2012(M100-S22)に準拠している。

表 14 Streptococcus pneumoniae (髄液検体以外)の耐性率の推移 (%)

·	ВР	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PCG*	4	3.2 (24,980)	2.7 (26,932)	2.5 (27,206)	2.7 (36,475)	2.1 (35,960)	2.1 (34,415)	2.2 (33,483)	2.2 (31,506)	3.5 (16,056)	3.4 (16,526)	3.8 (14,510)
СТХ	4	2.4 (21,654)	2.0 (23,096)	1.8 (23,002)	1.6 (30,734)	1.4 (29,405)	1.6 (27,773)	1.4 (27,004)	1.4 (26,040)	2.1 (13,140)	2.1 (13,878)	2.4 (12,372)
MEPM	1	6.9 (22,989)	5.1 (24,986)	5.4 (25,760)	5.0 (34,461)	5.7 (34,885)	6.0 (34,011)	6.3 (33,115)	6.4 (31,489)	8.9 (16,152)	8.9 (16,479)	8.8 (14,452)
EM	1	87.0 (21,979)	86.2 (22,435)	86.7 (22,215)	85.5 (30,501)	84.4 (30,144)	82.4 (28,097)	81.3 (27,154)	81.5 (26,270)	80.4 (13,529)	80.5 (14,352)	82.0 (12,750)
CLDM	1	56.4 (17,513)	56.1 (19,719)	57.1 (20,296)	56.1 (27,555)	54.1 (28,541)	50.5 (27,536)	49.9 (26,459)	50.9 (25,404)	49.5 (13,651)	49.5 (14,047)	50.3 (12,386)
LVFX	8	3.0 (24,105)	3.1 (25,764)	3.3 (26,236)	3.5 (35,457)	4.1 (35,431)	4.3 (34,241)	4.4 (33,551)	4.7 (32,057)	6.4 (16,499)	6.0 (16,818)	6.4 (14,805)
VCM	2	0.0 (24,085)	0.0 (25,425)	0.0 (25,775)	0.0 (33,530)	0.0 (33,670)	0.0 (32,681)	0.0 (31,741)	0.0 (30,250)	0.0 (15,625)	0.0 (16,176)	0.0 (14,140)

BPの単位は μg/mL。括弧内は薬剤感受性試験を実施した菌株数。

^{*}PCG は耐性(R:8 μ g/mL)と中間耐性(I:4 μ g/mL)の率の和。BP は CLSI 2012(M100-S22)に準拠している。

③ 薬剤耐性菌感染症

データ元:感染症発生動向調査事業(NESID)

NESID における 2021 年までの各年の届出症例数は確定報告データとして公開されている。2013 年以降の報告数を以下に示す。届出対象は、分離菌が感染症の起因菌と判定されるか、通常無菌的であるべき検体からの検出である場合となっており、いわゆる保菌は届出対象ではない。

全数把握対象疾患のうち、バンコマイシン耐性腸球菌(VRE)感染症は、2013 年から 2016 年まで 50-60 例で推移していたが、2017 年以降は増加傾向で 2021 年は 124 例が報告された。バンコマイシン耐性黄色ブドウ球菌(VRSA)感染症は届出対象となった 2003 年 11 月 5 日以降報告はない。カルバペネム耐性腸内細菌目細菌(CRE)感染症については、2014 年 9 月 19 日より届出対象となり、2021 年には 2,066 例が報告され、2018 年以降概ね 2,000 例から 2,300 例で推移していた。薬剤耐性アシネトバクター属(MDRA)感染症は、2011 年 2 月より基幹定点医療機関からの届出対象疾患として把握が開始されたが、2014 年 9 月 19 日より全数把握対象疾患となり、毎年 20-40 例の報告で推移していたが、2021 年は 6 例が報告された。

CRE 感染症については、2017 年 3 月の厚生労働省健康局結核感染症課長通知により、届出症例より分離された菌株について地方衛生研究所等で PCR 法によるカルバペネマーゼ遺伝子等の試験検査が実施されている。2021 年は 1,441 株の結果が報告され、主要なカルバペネマーゼ遺伝子が検出された株は 217 株(15.1%)で、国内型カルバペネマーゼ遺伝子の IMP 型が 189 株(87.1%)と大半を占めた。IMP 型検出株の菌種や IMP 遺伝子型別は、2017 年以降、同様の地域特性を示した。

基幹定点医療機関(原則病床数300以上の医療機関、全国500か所)が届出を行う薬剤耐性菌感染症については、MRSA 感染症は2011年以降、報告数及び定点あたり報告数ともに概ね減少しており、2021年は、14,516例が報告された。薬剤耐性緑膿菌(MDRP)感染症は2013年から概ね減少しており、2021年の報告数は118例であった。ペニシリン耐性肺炎球菌(PRSP)感染症は報告数及び定点あたり報告数ともに減少傾向が続いていた。

i. 全数把握对象疾患

表 15 全数把握対象疾患の報告数推移、2013-2021 (件)

	2013	2014	2015	2016	2017	2018	2019	2020	2021
VRE	55	56	66	61	83	80	80	136	124
VRSA	0	0	0	0	0	0	0	0	0
CRE	-	314*	1,671	1,573	1,660	2,289	2,333	1,956	2,066
MDRA	-	15*	38	33	28	24	24	10	6

^{*2014}年9月19日からの報告数。

^{- :}調査を実施していない区分。

ii. 基幹定点医療機関からの届出対象疾患

表 16 基幹定点医療機関からの届出対象疾患の推移、2013-2021 (件)

	年	2013	2014	2015	2016	2017	2018	2019	2020	2021
PRSP	報告数	3,161	2,292	2,057	2,017	2,001	1,895	1,754	879	846
	定点当たり	6.65	4.79	4.29	4.21	4.18	3.94	3.65	1.84	1.77
MRSA	報告数	20,155	18,082	17,057	16,338	16,551	16,311	16,241	14,940	14,516
	定点当たり	42.43	37.83	35.61	34.11	34.55	33.91	33.84	31.19	30.30
MDRA*	報告数	8	4	-	-	-	-	-	-	-
	定点当たり	0.02	0.01	-	-	-	-	-	-	-
MDRP	報告数	319	268	217	157	128	121	127	116	118
	定点当たり	0.67	0.56	0.45	0.33	0.27	0.25	0.26	0.24	0.25

^{* 2014} 年 9 月 19 日より全数把握対象疾患に変更された。

^{- :}調査を実施していない区分。

④ その他の耐性菌

i . Campylobacter spp.

データ元:東京都健康安全研究センター

東京都健康安全研究センターでは、カンピロバクター属菌について薬剤耐性率の動向調査を行っている。2022年に東京都内で発生した食中毒 104事例中 19事例(18.3%)がカンピロバクター属菌によるものであり、2005年以降、細菌性食中毒原因菌の第 1位を占めている 1 。薬剤感受性試験に供試した菌株は、東京都内で分離された散発下痢症患者由来の $Campylobacter\ jejuni$ および $Campylobacter\ coli$ である。2011年から 2021年の耐性率を表に示した。2021年は、新型コロナウイルス感染症が流行した影響で、供試菌株は非常に少なかった。 $Campylobacter\ jejuni$ のシプロフロキサシン(CPFX)耐性率は 31.0%で、2020年と同程度の耐性率であった。エリスロマイシン(EM)耐性株は 2.4%であった。 $Campylobacter\ coli$ における CPFX 耐性率は 100%であり、昨年より耐性率は高かった。いずれも年により耐性率の増減はあるものの、ほぼ横ばい傾向で推移している。ただし、 $Campylobacter\ coli$ では供試菌株数が少ないことも考慮に入れる必要がある。

表 17 散発下痢症由来 Campylobacter jejuni *の耐性率 (%)

(/++ =+ */-\	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
(供試数)	(108)	(83)	(85)	(125)	(116)	(113)	(115)	(110)	(132)	(86)	(42)
EM	3.7	2.4	1.2	0.8	0.9	0.9	1.7	1.8	3.0	0.0	2.4
NA	53.7	62.7	50.6	50.4	37.1	53.1	46.1	51.7	54.5	31.4	31.0
CPFX	53.7	62.7	50.6	50.4	37.1	52.2	43.5	51.8	54.5	31.4	31.0

^{*}東京都内の散発下痢症患者から分離された株。文献〔5〕から作成、一部変更。

表 18 散発下痢症由来 Campylobacter coli *の耐性率 (%)

(供試数)	2011 (8)	2012 (9)	2013 (12)	2014 (7)	2015 (8)	2016 (14)	2017 (8)	2018 (8)	2019 (16)	2020 (7)	2021 (3)
EM	12.5	22.2	16.7	28.6	0.0	14.3	25.0	62.5	25.0	28.6	33.3
NA	87.5	66.7	75.0	57.1	50.0	50.0	62.5	50.0	68.8	57.1	100.0
CPFX	87.5	66.7	75.0	57.1	50.0	35.7	62.5	37.5	68.8	57.1	100.0

^{*}東京都内の散発下痢症患者から分離された株。文献〔5〕から作成、一部変更。

ii . Non-typhoidal Salmonella spp.

データ元:地方衛生研究所

全国 21-23 か所の地方衛生研究所では、2015 年~2022 年に分離されたサルモネラ 3,303 株の薬剤耐性状況を統一した方法で調査している 2 。ヒト由来株及び食品由来株の主な血清型を表 19 に示している。

ヒト (有症者) 由来株 (2,316 株) の 38.3%、食品由来株 (987 株) の 90.4%が、調査に用いた 17 剤のうち 1 剤以上の抗菌薬に耐性を示した (表 20、21)。事業化された調査ではないものの、全国的調査であり、2015 年~2022 年分離株の年次毎の耐性率は、国内の状況を反映していると考えられる。今期 (2022 年) 分離株では、ヒト由来 239 株中の 73 株 (30.5%)、及び食品由来 132 株中の

120 株 (90.9%) が 1 剤以上に耐性を示し、これらは、2015 年~2021 年に分離されたヒト由来 2,077 株の耐性率(39.2%)、及び食品由来 855 株の耐性率(90.3%)と比べ、それぞれ大きな相違はなかったが、過去 8 年間の年次推移では、ヒト由来株ではやや減少傾向が見られる一方、食品由来株ではほぼ横ばいに推移している。多剤耐性の状況としては、ヒト由来株及び食品由来株ともに 3 剤耐性の割合が多かった。6 から 11 剤に耐性を示す多剤耐性株も、ヒト由来 2,316 株中の 42 株(1.8%)、食品由来 987 株中の 64 株(6.5%)に認められた。また、2020 年のヒト由来分離株から初めてメロペネム(MEPM)に対する耐性株が検出され(表 20)、分離された 1 株は S. Heidelberg で、MEPMを含め 8 剤に耐性を示す多剤耐性株であった。一方、食品由来株からはこれまでにメロペネム耐性株は検出されていない。

食品由来株上位 2 血清型(S. Infantis、S. Schwarzengrund)の薬剤耐性率を表 $22\sim23$ に、ヒト由来株上位 5 血清型(S. Infantis、S. Enteritidis、S. Thompson、S. 4:i:-, S. Saintpaul)の薬剤耐性率を表 $24\sim28$ に示す。食品由来株では、最近(2020-2022 年)分離された S. Schwarzengrund の占める割合が 2015 年~2019 年よりも特に高くなっていたが、耐性傾向は大きくは異なっていなかった。一方、ヒト由来株においては血清型別に特徴的な耐性傾向が認められたため、血清型別の耐性率を経年的に比較し示している。

また、ヒト由来株上位 10 血清型及び食品由来株上位 5 血清型に共通して見いだされる 3 血清型(S. Schwarzengrund、S. Infantis、S. Manhattan)の薬剤耐性率をヒト由来株と食品由来株の間で比較すると(表 29)、それぞれの血清型において、各種抗菌薬に対する全体的な耐性傾向に高い類似性が認められることから、ヒト由来耐性菌(S. Infantis の約 4 割、S. Schwarzengrund S. Manhattanの大部分)と食品由来耐性菌との間の関連が強く示唆された。

薬剤感受性試験に加えて、2015 年~2021 年分離株(ヒト由来 2,077 株、食品由来 855 株)のうち、セフォタキシム(CTX)、セフタジジム(CAZ)、セフォキシチン(CFX)の 1 剤以上に耐性を示す 菌株(ヒト由来 44 株、食品由来 49 株)を対象に、基質特異性拡張型 β -ラクタマーゼ(ESBL)産 生遺伝子及び AmpC 型 β -ラクタマーゼ(AmpC)産生遺伝子の検出を実施した。ESBL 産生遺伝子では、ヒト由来株、食品由来株とも、CTX-M-1 グループの保有が最も多く、TEM 型が次に多かった。 AmpC 産生遺伝子では、ヒト由来株、食品由来株とも、CIT 型の保有が最も多かった。これらの結果から、ESBL 産生遺伝子、AmpC 産生遺伝子ともに、ヒト由来株と食品由来株での検出傾向に類似性が認められた一方、CTX-M-9 グループ(ESBL 産生遺伝子)はヒト由来株のみに、EBC 型(AmpC 産生遺伝子)は食品由来株のみに検出されるなど、それぞれの株に特徴的な検出も認められた。

表 19 ヒト及び食品由来 non-typhoidal Salmonella spp. の血清型(2015-2022)

ヒト由来株	
(n=2,316)	%
Enteritidis	13.3
4:i:-	10.8
Infantis	8.6
Thompson	8.1
Typhimurium	6.3
Saintpaul	5.8
Schwarzengrund	5.4
Stanley	3.5
Newport	2.9
Manhatten	2.2
Others	33.1
Total	100.0

食品由来株	
(n=987)	%
Schwarzengrund	55.0
Infantis	20.9
Manhattan	8.0
Agona	1.8
Heidelberg	1.8
Others	12.5
Total	100.0

表 20 ヒト由来 non-typhoidal *Salmonella* spp.の耐性率(2015-2022)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=387)	(n=360)	(n=393)	(n=315)	(n=265)	(n=211)	(n=146)	(n=239)	(n=2316)
ABPC	17.3	18.1	16.0	19.4	14.7	14.7	12.3	14.2	16.3
GM	0.3	0.6	0.8	0.6	1.5	0.5	0.7	0.4	0.6
KM	5.9	11.7	7.4	8.3	6.4	6.2	7.5	4.6	7.4
SM	27.4	30.0	26.2	29.2	23.8	25.6	21.9	19.2	26.1
TC	32.6	29.2	27.5	25.4	22.6	26.1	21.9	18.4	26.3
ST	4.4	6.7	8.1	6.3	3.4	9.0	4.8	2.9	5.8
CP	2.3	6.4	5.3	6.0	5.3	5.2	5.5	4.2	5.0
CTX	0.3	2.5	3.3	3.2	1.5	0.9	2.1	1.3	1.9
CAZ	0.3	2.2	1.8	1.9	0.8	0.9	1.4	0.8	1.3
CFX	0.0	1.4	0.5	0.6	0.0	0.9	1.4	0.8	0.6
FOM	0.0	0.3	0.3	0.3	0.4	0.5	0.0	0.0	0.2
NA	7.0	8.1	8.9	5.7	4.2	5.2	5.5	13.4	7.4
CPFX	0.3	0.8	1.8	0.3	0.4	0.0	1.4	0.8	0.7
NFLX	0.3	0.8	0.5	0.0	0.8	0.0	0.0	0.8	0.4
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0
1 剤以上耐性数	164	161	147	125	89	83	46	73	888
1 剤以上耐性率	42.4	44.7	37.4	39.7	33.6	39.3	31.5	30.5	38.3

表 21 食品由来 non-typhoidal *Salmonella* spp. * の耐性率(2015-2022)(%)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=156)	(n=110)	(n=86)	(n=108)	(n=126)	(n=129)	(n=140)	(n=132)	(n=987)
ABPC	17.9	13.6	11.6	12.0	11.1	12.4	5.0	2.3	10.7
GM	0.0	0.9	1.2	0.0	0.0	0.0	0.7	0.0	0.3
KM	48.1	47.3	45.3	50.0	57.1	65.9	62.9	59.1	55.0
SM	82.7	70.9	69.8	77.8	64.3	70.5	71.4	81.1	74.0
TC	85.9	76.4	73.3	78.7	70.6	82.9	80.7	81.8	79.3
ST	19.9	16.4	12.8	38.0	25.4	24.8	14.3	22.0	21.7
CP	7.1	10.0	2.3	8.3	4.0	7.0	4.3	4.5	6.0
CTX	5.1	5.5	8.1	6.5	6.3	4.7	1.4	0.0	4.5
CAZ	4.5	6.4	8.1	6.5	4.8	3.9	0.0	0.0	4.0
CFX	2.6	3.6	8.1	4.6	5.6	5.4	1.4	0.0	3.6
FOM	0.0	0.9	1.2	0.0	0.0	0.0	0.0	0.0	0.2
NA	18.6	18.2	14.0	16.7	27.0	23.3	20.0	22.0	20.3
CPFX	0.0	0.9	1.2	0.0	0.0	0.0	0.0	0.0	0.2
NFLX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1 剤以上耐性数	143	96	77	98	113	124	121	120	892
1 剤以上耐性率	91.7	87.3	89.5	90.7	89.7	96.1	86.4	90.9	90.4

表 22 食品由来 S. Infantis の耐性率(2015-2022)(%)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=65)	(n=33)	(n=19)	(n=27)	(n=24)	(n=8)	(n=20)	(n=10)	(n=206)
ABPC	10.8	12.1	5.3	14.8	8.3	37.5	10.0	0.0	11.2
GM	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5
KM	46.2	42.4	15.8	33.3	37.5	62.5	35.0	60.0	40.3
SM	81.5	72.7	68.4	85.2	58.3	50.0	60.0	100.0	74.3
TC	89.2	81.8	68.4	85.2	58.3	37.5	70.0	100.0	78.6
ST	18.5	30.3	0.0	44.4	12.5	0.0	30.0	30.0	22.3
CP	3.1	3.0	0.0	0.0	0.0	12.5	5.0	0.0	2.4
CTX	4.6	6.1	5.3	11.1	8.3	12.5	0.0	0.0	5.8
CAZ	3.1	9.1	5.3	11.1	0.0	12.5	0.0	0.0	4.9
CFX	4.6	9.1	5.3	14.8	8.3	25.0	5.0	0.0	7.8
FOM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NA	3.1	9.1	0.0	3.7	16.7	0.0	15.0	0.0	6.3
CPFX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NFLX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 23 食品由来 S. Schwarzengrund の耐性率(2015-2022)(%)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=47)	(n=38)	(n=45)	(n=51)	(n=66)	(n=95)	(n=107)	(n=94)	(n=543)
ABPC	17.0	5.3	0.0	7.8	3.0	5.3	1.9	0.0	4.2
GM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KM	85.1	86.8	77.8	80.4	92.4	73.7	72.0	71.3	78.1
SM	93.6	78.9	82.2	76.5	74.2	80.0	73.8	80.9	79.2
TC	95.7	84.2	80.0	86.3	81.8	93.7	83.2	85.1	86.4
ST	36.2	18.4	24.4	56.9	43.9	30.5	12.1	21.3	28.5
CP	19.1	13.2	4.4	9.8	6.1	5.3	4.7	6.4	7.6
CTX	0.0	0.0	2.2	0.0	0.0	1.1	0.9	0.0	0.6
CAZ	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.2
CFX	0.0	0.0	2.2	0.0	0.0	1.1	0.0	0.0	0.4
FOM	0.0	2.6	2.2	0.0	0.0	0.0	0.0	0.0	0.4
NA	25.5	21.1	6.7	23.5	27.3	20.0	18.7	22.3	20.8
CPFX	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.2
NFLX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 24 ヒト由来 S. Infantis の耐性率(2015-2022)(%)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=34)	(n=48)	(n=47)	(n=22)	(n=16)	(n=19)	(n=9)	(n=5)	(n=200)
ABPC	0.0	2.1	0.0	9.1	6.3	5.3	0.0	0.0	2.5
GM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KM	20.6	14.6	6.4	22.7	12.5	5.3	11.1	0.0	13.0
SM	29.4	33.3	19.1	50.0	31.3	26.3	22.2	0.0	29.0
TC	47.1	33.3	21.3	54.5	37.5	47.4	22.2	20.0	36.0
ST	14.7	14.6	2.1	18.2	0.0	21.1	0.0	0.0	10.5
CP	0.0	0.0	0.0	9.1	6.3	5.3	0.0	0.0	2.0
CTX	0.0	0.0	0.0	4.5	6.3	5.3	0.0	0.0	1.5
CAZ	0.0	0.0	0.0	0.0	0.0	5.3	0.0	0.0	0.5
CFX	0.0	2.1	0.0	0.0	0.0	5.3	0.0	0.0	1.0
FOM	0.0	0.0	0.0	0.0	6.3	0.0	0.0	0.0	0.5
NA	8.8	4.2	8.5	0.0	12.5	5.3	11.1	0.0	6.5
CPFX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NFLX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 25 ヒト由来 S. Enteritidis の耐性率(2015-2022)(%)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=39)	(n=41)	(n=47)	(n=43)	(n=37)	(n=35)	(n=20)	(n=47)	(n=309)
ABPC	5.1	19.5	4.3	7.0	5.4	0.0	0.0	23.4	9.1
GM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KM	2.6	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.6
SM	12.8	12.2	10.6	14.0	5.4	2.9	0.0	23.4	11.3
TC	10.3	2.4	4.3	9.3	5.4	2.9	0.0	6.4	5.5
ST	5.1	0.0	0.0	0.0	0.0	5.7	0.0	0.0	1.3
CP	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
CTX	0.0	2.4	0.0	0.0	0.0	0.0	5.0	0.0	0.6
CAZ	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.3
CFX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FOM	0.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.3
NA	10.3	26.8	12.8	25.6	10.8	14.3	15.0	44.7	21.0
CPFX	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.3
NFLX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 26 ヒト由来 S. Saintpaul の耐性率(2015-2022)(%)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=27)	(n=26)	(n=41)	(n=10)	(n=8)	(n=12)	(n=7)	(n=4)	(n=135)
ABPC	7.4	7.7	14.6	10.0	0.0	8.3	0.0	0.0	8.9
GM	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.7
KM	0.0	3.8	4.9	0.0	0.0	0.0	0.0	0.0	2.2
SM	3.7	3.8	12.2	0.0	0.0	8.3	0.0	0.0	5.9
TC	40.7	15.4	22.0	10.0	12.5	25.0	14.3	25.0	23.0
ST	0.0	11.5	17.1	10.0	12.5	8.3	0.0	0.0	9.6
CP	3.7	0.0	14.6	0.0	12.5	0.0	0.0	0.0	5.9
CTX	0.0	0.0	12.2	0.0	0.0	0.0	0.0	0.0	3.7
CAZ	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.7
CFX	0.0	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.7
FOM	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.7
NA	7.4	3.8	19.5	0.0	0.0	0.0	0.0	25.0	8.9
CPFX	3.7	0.0	9.8	0.0	0.0	0.0	0.0	0.0	3.7
NFLX	3.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 27 ヒト由来 S. 4:i:-の耐性率(2015-2022)(%)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=60)	(n=37)	(n=36)	(n=36)	(n=23)	(n=24)	(n=17)	(n=16)	(n=249)
ABPC	71.7	64.9	77.8	86.1	82.6	79.2	76.5	75.0	75.9
GM	1.7	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.8
KM	3.3	5.4	2.8	8.3	4.3	4.2	11.8	0.0	4.8
SM	73.3	70.3	80.6	91.7	82.6	70.8	70.6	68.8	76.7
TC	85.0	62.2	77.8	80.6	65.2	50.0	76.5	75.0	73.5
ST	5.0	10.8	5.6	8.3	8.7	0.0	5.9	6.3	6.4
CP	3.3	10.8	8.3	13.9	8.7	4.2	11.8	6.3	8.0
CTX	0.0	2.7	2.8	2.8	0.0	0.0	0.0	0.0	1.2
CAZ	0.0	2.7	2.8	0.0	0.0	0.0	0.0	0.0	0.8
CFX	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.4
FOM	0.0	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.4
NA	1.7	2.7	5.6	0.0	0.0	0.0	0.0	0.0	1.6
CPFX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NFLX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 28 ヒト由来 S. Thompson の耐性率(2015-2022)(%)

	2015	2016	2017	2018	2019	2020	2021	2022	計
	(n=28)	(n=28)	(n=29)	(n=29)	(n=27)	(n=11)	(n=14)	(n=21)	(n=187)
ABPC	0.0	10.7	0.0	0.0	7.4	0.0	0.0	0.0	2.7
GM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KM	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1
SM	7.1	7.1	3.4	6.9	0.0	0.0	7.1	0.0	4.3
TC	3.6	7.1	6.9	0.0	0.0	0.0	0.0	0.0	2.7
ST	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	1.1
CP	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	1.1
CTX	0.0	10.7	0.0	0.0	0.0	0.0	0.0	0.0	1.6
CAZ	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	1.1
CFX	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	1.1
FOM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NA	0.0	0.0	0.0	3.4	0.0	0.0	0.0	0.0	0.5
CPFX	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	1.1
NFLX	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	1.1
AMK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 29 ヒト及び食品から検出される *S.* Infantis、*S.* Schwarzengrund、*S.* Manhattan の耐性率(2015-2022)(%)

	Infa	ntis	Schwarz	engrund	Manl	Manhattan		
	ヒト (n=200)	食品 (n=206)	ヒト (n=125)	食品(n=543)	ヒト (n=52)	食品 (n=79)		
ABPC	2.5	11.2	2.4	4.2	1.9	12.7		
GM	0.0	0.5	0.0	0.0	0.0	0.0		
KM	13.0	40.3	63.2	78.1	0.0	0.0		
SM	29.0	74.3	65.6	79.2	90.4	96.2		
TC	36.0	78.6	65.6	86.4	88.5	79.7		
ST	10.5	22.3	24.0	28.5	0.0	5.1		
CP	2.0	2.4	2.4	7.6	0.0	0.0		
CTX	1.5	5.8	2.4	0.6	0.0	8.9		
CAZ	0.5	4.9	1.6	0.2	0.0	8.9		
CFX	1.0	7.8	0.0	0.4	0.0	1.3		
FOM	0.5	0.0	0.0	0.4	0.0	0.0		
NA	6.5	6.3	14.4	20.8	7.7	15.2		
CPFX	0.0	0.0	0.0	0.2	0.0	1.3		
NFLX	0.0	0.0	0.0	0.0	0.0	0.0		
AMK	0.0	0.0	0.0	0.0	0.0	0.0		
IPM	0.0	0.0	0.0	0.0	0.0	0.0		
MEPM	0.0	0.0	0.0	0.0	0.0	0.0		

iii. Neisseria gonorrhoeae

データ元:国立感染症研究所

2015 年~2022 年に分離された淋菌(それぞれ 618 株、675 株、982 株、1,167 株、1,023 株、825 株、698 株、950 株)の薬剤感受性試験(EUCAST の判定基準に基づく;表 30 参照)の結果、セフトリアキソン(CTRX)耐性率は 2015 年以降、6.2%、4.3%、4.3%、3.5%、5.4%、2.7%、0.7%、1.9%であった。CLSI の基準でも耐性を判定される MIC 0.5 μ g/mL 以上の株については 2015 年以降 0.6%、0.4%、0.5%、0.3%、0.4%、0%、0%、0.1%であった。スペクチノマイシン(SPCM)耐性株は存在しなかった。一方で、アジスロマイシン(AZM)耐性率は 2015 年では 13.0%であったものが、2016 年以降 2020 年までは 33%~43.9%の間で推移し、2021 年、2022 年では 11.6%、18.4%であった。

CLSI では耐性基準が設定されていないが、23S rRNA 遺伝子変異株の AZM MIC の分布から 2 μ g/mL 以上を示す株を非野生型と称している。参考値ながらも耐性率を調べたところ(参考資料 (8) 参照)、2015~2022年ではそれぞれ3.2%、4.0%、4.0%、6.3%、7.5%、7.0%、6.7%、9.8%の株が2 μ g/mL 以上を示し、増加傾向を示した。また、国内の臨床評価からは AZM MIC 1 μ g/mL 以上を示す株は耐性とすることが妥当と考えられることから、その基準(R: \geq 1 μ g/mL)を採用した場合の耐性率は、2015~2022年ではそれぞれ、11.0%、9.3%、11.2%、15.9%、14.9%、14.3%、11.5%、18.2%が耐性と評価された。他の 3 剤に関しては、セフィキシム(CFIX)耐性株が約 20~40%、CPFX 耐性株が約 60~80%を占めていた。ベンジルペニシリン(PCG)に対しては 80%以上が治療効果を望めない株であった。

表 30 Neisseria gonorrhoeae の耐性率 (%)

	2015年	2016年	2017年	2018年	2019 年	2020年	2021年	2022 年
	(618 株)	(675 株)	(982 株)	(1167株)	(1023 株)	(825 株)	(698株)	(950株)
CTRX	6.2	4.3	4.3	3.5	5.4	2.7	0.7	1.9
SPCM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AZM	13.0	33.5	42.6	43.9	40.1	40.2	11.6	18.4
PCG*	38.4 (96.6)	36.3 (96.9)	37.8 (99.0)	31.7 (82.5)	35.8 (88.5)	37.1 (98.9)	23.5 (92.7)	22.3 (98.7)
CFIX	36.2	43.2	31.0	28.4	33.4	33.1	21.9	25.9
CPFX	79.5	78.0	75.8	66.9	64.6	71.2	75.6	83.4

感受性・耐性判定は、EUCAST (参考資料8) の基準を用いた。

EUCAST による耐性判定基準は、次の通り。CTRX(>0.125 μ g/mL)、SPCM(>64 μ g/mL)、AZM(>0.5 μ g/mL)、PCG(>1 μ g/mL)、CFIX(>0.125 μ g/mL)、CPFX(>0.06 μ g/mL)

iv. Salmonella Typhi, Salmonella Paratyphi A, Shigella spp.

データ元:国立感染症研究所

2015~2022 年に分離された Salmonella Typhi(チフス菌)(14~46 株 [新型コロナウイルス感染症流行の影響を大きく受けたと推定される 2021 年を除く。以下、パラチフス A 菌及び赤痢菌についても同様。])の薬剤感受性試験の結果、シプロフロキサシン(CPFX)非感受性株の割合は 60.7~83.9%であり、CPFX 高度耐性(MIC \ge 4 μ g/mL)株の割合は 5.9~42.9%であった。またこの期間において、アンピシリン(ABPC)、クロラムフェニコール(CP)、スルファメトキサゾール・トリメトプリム(ST)合剤に耐性を示す多剤耐性チフス菌が 17 株、セフォタキシム(CTX)耐性チフス菌が 5 株分離された。

一方、 $2015\sim2022$ 年に分離された Salmonella Paratyphi A(パラチフス A 菌)($5\sim30$ 株)の薬剤感受性試験の結果、CPFX 非感受性株の割合は $76.9\sim100.0\%$ であった。パラチフス A 菌では CPFX 高度耐性株及び CTX 耐性株は分離されなかった。

2015~2022 年に分離された Shigella spp. (赤痢菌) (14~156 株)の薬剤感受性試験の結果、ST 合剤への耐性率は 71.4~91.9%、CPFX への耐性率は 7.1~45.7%、CTX への耐性率は 0.0~27.0%であった。

表 31 Salmonella Typhi の耐性率 (%)

	2015 年 (32 株)	2016年 (46株)	2017年 (31株)	2018年 (34株)	2019 年 (28 株)	2020年 (20株)	2021年 (3株)	2022 年 (14 株)
ABPC	5.7	2.2	12.9	2.9	10.7	20.0	0.0	14.3
CP	5.7	2.2	12.9	5.9	10.7	25.0	0.0	14.3
ST	5.7	2.2	12.9	5.9	10.7	25.0	0.0	21.4
NA	68.8	63.0	83.9	61.7	57.1	55.0	66.7	57.1
CPFX	68.8 (12.5*)	63.0 (23.9*)	83.9 (16.1*)	61.7 (5.9*)	60.7 (10.7*)	65.0 (25.0*)	100.0 (0.0*)	64.3 (42.9)
CTX	0.0	0.0	0.0	2.9	3.6	15.0	0.0	0.0

^{*}フルオロキノロン高度耐性。

^{*}括弧内の数字は、耐性と中間耐性の率の和。

表 32 Salmonella Paratyphi A の耐性率(%)

	2015 年	2016年	2017年	2018年	2019年	2020年	2021年	2022 年
	(30 株)	(20 株)	(13 株)	(21 株)	(16 株)	(5 株)	(0 株)	(10 株)
ABPC	0.0	0.0	0.0	0.0	0.0	0.0	-	10.0
СР	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0
ST	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0
NA	80.0	80.0	76.9	100.0	87.5	100.0	-	70.0
CPFX	83.3	83.3	76.9	100.0	87.5	100.0	-	100.0
CTX	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0

表 33 Shigella spp.の耐性率(%)

	2015年	2016年	2017年	2018年	2019年	2020年	2021年	2022年
	(105 株)	(73 株)	(91 株)	(156 株)	(91 株)	(74 株)	(2 株)	(14 株)
ABPC	21.9	42.5	31.9	19.2	14.3	41.9	50.0	14.3
CP	11.4	24.7	26.4	9.0	6.6	4.1	50.0	7.1
ST	81.0	80.8	73.6	76.9	76.9	91.9	50.0	71.4
NA	63.8	52.1	52.8	45.5	33.0	83.8	50.0	7.1
CPFX	45.7	35.6	35.2	21.2	14.3	35.1	0.0	7.1
CTX	5.7	16.4	13.2	5.1	3.3	27.0	0.0	0.0

5 Mycobacterium tuberculosis

データ元:公益財団法人結核予防会結核研究所

2012 年から 2022 年の新登録肺結核菌培養陽性患者での主要抗結核薬(イソニアジド(INH)、リファンピシン(RFP)及びエタンブトール(EB))への耐性率は、INH の耐性率は近年上昇傾向であるが、RFP 及び EB ほぼ横ばいであった。ストレプトマイシン(SM)耐性については、2017 年は、最大 1.1 ポイントの上昇がみられたが、2018 年からはほぼ横ばいであった。多剤耐性(INH 及び RFP 両剤に耐性)結核菌を有する患者は、年間約 $40\sim60$ 名($0.4\sim0.9$ %)で推移していたが、2022 年には 26 名まで減少している。

表 34 新規肺結核培養陽性患者数 - 登録時薬剤感受性の推移

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
培養陽性患 者数, N	10,915	11,261	10,523	10,259	10,035	9,878	9,580	9,016	8,110	6,645	5,902	5,231
INH 耐性, n	386	380	369	349	372	369	383	377	359	297	221	200
(%)*	(4.8)	(4.6)	(4.8)	(4.6)	(4.9)	(4.8)	(4.9)	(5.0)	(5.4)	(5.7)	(4.9)	(4.9)
RFP 耐性, n (%)*	86 (1.1)	73 (0.9)	64 (0.8)	76 (1.0)	77 (1.0)	74 (1.0)	80 (1.0)	87 (1.1)	65 (1.0)	60 (1.2)	56 (1.2)	41 (1.0)
INH,RFP 両 剤耐性†, n(%)*	60 (0.7)	60 (0.7)	47 (0.4)	56 (0.5)	48 (0.5)	49 (0.6)	52 (0.7)	55 (0.6)	44 (0.7)	46 (0.9)	41 (0.9)	26 (0.6)
SM 耐性, n (%) [§]	-	509 (6.1)	475 (6.2)	469 (6.2)	476 (6.3)	461 (6.0)	557 (7.1)	471 (6.3)	428 (6.5)	356 (6.9)	287 (6.4)	272 (6.7)
EB 耐性, n (%) [¶]	-	151 (1.8)	106 (1.4)	130 (1.7)	129 (1.7)	100 (1.3)	106 (1.3)	130 (1.7)	126 (1.9)	78 (1.5)	79 (1.9)	59 (1.4)

^{*}培養陽性患者数のうち INH 及び RFP の薬剤感受性結果がある患者(2011 年 8,046 人、2012 年 8,347 人、2013 年 7,701 人、2014 年 7,645 人、2015 年 7,630 人、2016 年 7,732 人、2017 年 7,891 人、2018 年 7,570 人、2019 年 6,658 人、2020 年 5,209 人、2021 年 4,551 人)を分母とする。

^{-:}調査を実施していない区分。

[†]INH、RFP 両剤耐性=多剤耐性結核。

[§]INH、RFP 両剤の感受性結果がある患者のうち、SM の感受性検査未実施または感受性結果不明である患者(54 人、2012 年;48 人、2013 年;52 人、2014 年;48 人、2015 年;47 人、2016 年;51 人、2017 年;47 人、2018 年;41 人、2019 年;38 人、2020 年;36 人、2021 年:23 人、2022 年)を除いたものに占める割合。

[「]INH、RFP 両剤の感受性結果がある患者のうち、EB の感受性検査未実施または感受性結果不明である患者(14 人、2012 年;13 人、2013 年;13 人、2014 年;19 人、2015 年;17 人、2016 年;14 人、2017 年;13 人、2018 年;8 人、2019 年;14 人、2020 年;9 人、2021 年)を除いたものに占める割合。

⑥ Clostridioides difficile 感染症

Clostridioides difficile infection (CDI) は、芽胞産生のグラム陽性嫌気性桿菌であり、健康成人の 10%程度の腸管に定着 (colonization) している 3 。CDI は病院や老人介護施設等において下痢症を引き起こす主要な医療関連感染症であることに加えて、最近では、市中でも感染症を引き起こすことが 示唆されている 4 。

日本における既存の観察研究では、10,000 患者入院日数あたりの CDI 罹患率は $0.8\sim4.7$ 、1,000 入院あたりの有病率は $0.3\sim5.5$ と示されていた 5 。 toxigenic culture (TC) および nucleic acid amplification test (NAAT) 法を用いて行った多施設前向き研究(12 施設 20 病棟)では、10,000 患者入院日数あたりの CDI 罹患率は 7.4、ICU 病棟では 22.2 と、既存報告より罹患率が高く、ICU 病棟では特にリスクが高いことが示唆された 6 。病院間や諸外国などとの罹患率の比較には、検体採取病棟、検査方法、再燃の定義、平均入院日数の違い、などの影響を考慮する必要がある。

AMR 臨床リファレンスセンター(AMRCRC)では、2019 年より、J-SIPHE の運営を行い、年報を作成し CDI の動向調査を開始している。10,000 患者日あたりの CDI 発生数(表の n は施設数、施設毎の発生件数(発生数/在院患者延べ数 x 10,000)の分布を表示)は、2019 年、276 施設で 1.38(IQR: 0.56-2.43)、2020 年、347 施設で、1.20(IQR: 0.45-2.13)、2021 年、470 施設で 0.96(IQR: 0.32-1.97)、2022 年、1,241 施設で 0.82(IQR: 0.14-1.66)と減少傾向にあった。参加施設の増加に伴った集団特性の変化の影響を考慮する必要がある。

表 35 病院における Clostridioides difficile 発生状況の分布 (10,000 患者日あたりの発生数)

	2019 (n=276) *	2020 (n=347) **	2021 (n=470) **	2022 (n=1,241) **
Clostridioides difficile (IQR)	1.38 (0.56-2.43)	1.20 (0.45-2.13)	0.96 (0.32-1.97)	0.82 (0.14-1.66)

表の n は施設数、施設毎の発生件数(発生数/在院患者延べ数 x 10,000)の分布を表示

*2019 年:イムノクロマト法を用いたトキシン検査 253 施設、NAAT を用いた検査 3 施設、その他 20 施設

**2020 年:イムノクロマト法でトキシンのみを確認・陽性時に CDI と判定/陰性時に検査終了 2020 年 81 施設、2021 年 65 施設、2022 年 194 施設。イムノクロマト法でトキシンのみを確認・陽性時に CDI と判定/陰性時は培養コロニーを用いたイムノクロマト法でトキシンを判定し、いずれも陰性の場合は検査終了 2020 年 8 施設、2021 年 2 施設、2022 年 5 施設。イムノクロマト法で GDH とトキシンの両方を確認し GDH 陽性・トキシン陽性の場合に CDI と判定/GDH 陽性・トキシン陰性の場合は CDI と判定せず検査終了 2020 年 115 施設、2021 年 203 施設、2022 年 500 施設。イムノクロマト法で GDH とトキシンの両方を確認し GDH 陽性・トキシン陽性の場合に CDI と判定/GDH 陽性・トキシン陰性の場合は培養コロニーを用いてトキシンを判定し、いずれも陰性の場合は検査終了 2020 年 104 施設、2021 年 110 施設、2022 年 226 施設。イムノクロマト法で GDH とトキシンの両方を確認し GDH 陽性・トキシン陽性の場合に CDI と判定/GDH 陽性・トキシン陰性の場合は糞便中の毒素遺伝子検査でトキシンを判定し、陰性の場合は検査終了 2020 年 36 施設、2021 年 59 施設、2022 年 177 施設。糞便の毒素遺伝子検査のみでトキシンを確認し陽性時に CDI と判定/陰性時は検査終了 2020 年 3 施設、2021 年 1 施設、2022 年 29 施設。その他(上記以外)、2020 年 38 施設、2021 年 45 施設、2022 年 136 施設。

⑦ 院内感染症の発生状況

データ元: JANIS

JANIS の SSI 部門の集計対象医療機関数は過去 10 年間で 2 倍を超え、2022 年には 814 施設の 313,110 の手術件数のうち、SSI 件数は 12,998 (発生率 4.2%) であった。SSI 発生率は 2011 年以降 減少傾向で推移していたが、2022 年は横ばいとなった。

JANIS の ICU 部門では人工呼吸器関連肺炎の感染症発生率は過去 10 年間 1.2~1.8/1,000 ICU 入室 日数で推移しており、2022 年は 1.4/1,000 ICU 入室日数であった。尿路感染症の感染症発生率は、0.5~0.8/1,000 ICU 入室日数、カテーテル関連血流感染症の感染症発生率は 0.6~0.8/1,000 ICU 入室 日数で推移している。いずれも僅かな増減を繰り返している。なお、本事業では、ICU 入室後 48 時間以降、退室時までに発症した症例を集計対象としている。

i . 手術部位感染

表 36 SSI(全手術手技合計)の発生状況の推移(%)

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
全体の SSI 発生率(%)*	6.0	6.8	6.5	6.0	5.8	5.7	5.4	5.1	4.6	4.4	4.2	4.2
集計対象医療機関数	333	363	442	552	671	730	772	802	785	786	768	814
手術件数合計	127,731	129,825	161,077	207,244	251,832	274,132	292,031	305,960	307,052	290,795	291,958	313,110
SSI 件数合計	7,719	8,771	10,445	12,508	14,701	15,674	15,889	15,566	14,226	12,696	12,227	12,998

^{*}全体の SSI 発生率 (%) = (集計対象医療機関の SSI 件数合計) ÷ (集計対象医療機関の手術件数合計) × 100 JANIS SSI 部門年報より作成 (引用文献 7) 。

ii.集中治療室(ICU)における感染症

表 37 ICU における感染症の発生状況の推移

		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
人工呼吸	全体の感染症発生率 *	1.7	1.4	1.3	1.4	1.5	1.5	1.3	1.3	1.3	1.2	1.8	1.4
器関連 肺炎	集計対象医療機関の 感染症発生件数合計	382	327	324	395	522	499	405	409	387	333	508	421
尿路感染	全体の感染症発生率 *	0.5	0.5	0.6	0.5	0.5	0.6	0.7	0.8	0.6	0.7	0.5	0.6
症	集計対象医療機関の 感染症発生件数合計	111	124	143	148	190	219	213	244	174	183	157	184
カテーテ ル関連	全体の感染症発生率 *	0.7	0.7	0.8	0.7	0.7	0.8	0.7	0.6	0.6	0.7	0.7	0.8
血流感 染症	集計対象医療機関の 感染症発生件数合計	168	162	204	205	240	263	213	190	177	193	214	229

^{*}全体の感染症発生率 (%) = (集計対象医療機関の解析対象患者の感染症発生件数合計) ÷ (集計対象医療機関の解析対象患者の ICU 入室日数合計) × 1,000 JANIS ICU 部門年報より作成(引用文献 8)。

⑧ 病院における感染診療・感染対策・疾病負荷に関する調査

データ元: J-SIPHE、AMRCRC

AMR 臨床リファレンスセンター(AMRCRC)では、地域連携の推進とともに病院での AMR 対策に活用できるシステム J-SIPHE を運営している。2022 年の年報の対象施設は 1,876 施設(加算 1:868 施設、加算 2:493 施設、加算 3:487 施設、加算なし:28 施設)であった。登録情報は、各参加施設が任意に選択することができる。1,000 患者日あたりの血液培養提出数(n=1,049)は、中央値 23.2(IQR:0-131.8)であり、複数セット率(20 件以上提出の施設を集計 n=960)は、成人では中央値 90.3%(IRQ:0-100)であった。陽性率(20 件以上提出の施設を集計 n=960)は、中央値 17.9%(IRQ:1.3-85.8)であった。

2022 年における血液検体から検出された菌の 10,000 患者日あたりの発生数は、大腸菌の中央値 2.4 (IQR:1.8-3.5) が最多で、黄色ブドウ球菌の 1.9 (IQR:1.3-2.6) 、肺炎桿菌の 1.0 (IQR:0.5-1.5) と続き、昨年度に比してわずかに上昇した。一方、黄色ブドウ球菌及び大腸菌、肺炎桿菌の薬剤耐性菌の発生率は横ばいである。

手指衛生プラクティス状況では、手指衛生遵守率(n=110)が全体で 67.0%、内訳ではクリティカルケア部門(n=45)が一般病棟と比較して 72.2%と高かった。1,000 患者日あたりの手指消毒剤使用量(n=988)は、全体で 10.4 L (IQR:6.5-15.6)、内訳ではクリティカルケア部門(n=364)が 45.3 L (IQR:26.7-69.8) と一般病棟と比較して高かった。2019 年から上昇傾向にあり、新型コロナウイルス感染症対策に伴う手指衛生意識の向上がうかがえるが、2022 年は昨年度と比較すると横ばいとなっている。

また、厚生労働行政推進調査事業費にて、JANIS データを利用した研究を行い、血流感染症の患者における推定死亡数を公開した。MRSA による死亡数は減少から横ばいであった。フルオロキノロン耐性大腸菌による死亡数は、年々増加傾向は変わらなかった。今回、肺炎球菌、肺炎桿菌、緑膿菌を追加した。

死亡以外の要因(後遺症など)による損失も含めた疾病負荷の指標である DALYs を公開した。推定に要したいくつかのパラメータは海外の先行研究等から借用したものである。

表 38 J-SIPHE 年報対象施設の基本情報

	2019	2020	2021	2022
参加施設数	581	778	818	1,876
(加算 1)	(449)	(539)	(547)	(868)
(加算 2)	(127)	(232)	(263)	(493)
(加算 3) *	-	-	-	(487)
(加算なし)	(5)	(7)	(8)	(28)
ccct the modion (IOD)	340.5	308.1	301	214
病床数, median(IQR)	(221.3-525.3)	(196.0-498.3)	(184-480)	(129.8-382.2)
平均在院日数, median (IQR)	13.6 (11.7-17.1)	14.4 (12.0-19.0)	14.0 (11.8-19.7)	16.9 (12.3-34.7)

IQR (Interquartile range) : 四分位範囲 *加算3は2022年4月に新設された。

表 39 病院における血液培養複数セット率の分布 (%)

	2019	2020	2021	2022
患者全体, median(IQR)	90.6 (83.6-95.4)	92.8 (87.9-96.1)	93.1 (88.0-96.7)	93.1 (87.1-96.4)
	(n=276)	(n=326)	(n=401)	(n=960)
15 歳以上の患者, median	95.0 (90.8-97.2)	95.7 (92.3-97.5)	96.0 (92.8-97.7)	95.6 (91.2-97.6)
(IQR)	(n=276)	(n=326)	(n=401)	(n=960)
15 歳未満の患者, median	4.9 (0.9-16.8)	5.2 (0.0-21.7)	7.9 (1.4-26.7)	7.6 (0.7-22.5)
(IQR)	(n=178)	(n=211)	(n=261)	(n=510)

^{*} 血液培養提出数のうち、血液培養2セット以上の提出数の割合

2020:対象期間に、血液培養提出数が 20 以上のデータを対象 (表の n は施設数、施設毎血液培養セット率の分布を表示)

表 40 病院における血流感染症発生状況の分布(10,000 患者日あたりの発生数)

	2019 (n=253)	2020 (n=329)	2021 (n=329)	2022 (n = 1.030)
S. aureus, median (IQR) *	1.61 (0.86-2.17)	1.38 (0.75-2.21)	1.53 (0.80-2.27)	1.50 (0.63-2.27)
Enterococcus faecalis (IQR) *	0.37 (0.12-0.65)	0.38 (0.07-0.65)	0.39 (0.12-0.67)	0.31 (0.00-0.59)
Escherichia coli, median (IQR) *	2.20 (1.40-3.37)	2.13 (1.23-3.26)	2.21 (1.42-3.25)	2.07 (1.01-3.14)
Klebsiella pneumoniae, median (IQR) *	0.83 (0.43-1.29)	0.77 (0.32-1.26)	0.83 (0.36-1.29)	0.72 (0.22-1.27)
Klebsiella aerogenes (IQR) †	-	-	-	0.00 (0.00-0.20)
Enterobacter spp., median (IQR) *	0.32 (0.08-0.61)	0.31 (0.00-0.67)	0.34 (0.03-0.67)	-
Enterobacter cloacae complex (IQR) †	-	-	-	0.15 (0.00-0.40)
Streptococcus pneumoniae, median (IQR)	0.00 (0.00-0.15)	0.00 (0.00-0.08)	0.00 (0.00-0.07)	0.00 (0.00-0.00)
MRSA, median (IQR) *	0.59 (0.26-0.94)	0.56 (0.24-0.89)	0.56 (0.26-0.96)	0.56 (0.15-0.97)
3CREC, median (IQR)	0.42 (0.16-0.84)	0.50 (0.14-0.83)	0.49 (0.21-0.85)	0.46 (0.00-0.81)
FQREC, medina (IQR)	0.64 (0.27-1.18)	0.66 (0.28-1.11)	0.69 (0.35-1.13)	0.64 (0.18-1.07)
3CRKP, median (IQR)	0.00 (0.00-0.09)	0.00 (0.00-0.12)	0.00 (0.00-0.11)	0.00 (0.00-0.12)
PRSP, median (IQR)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)

MRSA; methicillin resistant *S. aureus*、 3 CREC; 3rd generation Cephalosporine resistant *E. coli*、 FQREC; fluoroquinolone resistant *E coli*、 3 CRKP; 3rd generation Cephalosporine resistant *Klebsiella pneumoniae*、 PRSP; penicillin resistant *Streptococcus pneumoniae*

^{*} S. aureus は MRSA、E. coli は FQREC もしくは 3CREC、Klebsiella pneumoniae は 3CRKP、S. pneumoniae は PRSP が含まれる。

[†] Enterobacter spp.は、2022 年 1 月から Enterobacter cloacae complex と Klebsiella aerogenes に分けて集計している。 (表の n は施設数、施設毎の血流感染症の発生の分布を表示)

表 41 病院における手指衛生遵守率の分布 (%)

	2019	2020	2021	2022
全体, median(IQR)	57.5 (45.0-68.3)	62.6 (50.3-75.1)	68.4 (50.9-78.0)	67.0 (49.0-78.9)
	(n=45)	(n=47)	(n=50)	(n=110)
クリティカルケア領域,	67.0 (55.8-75.2)	68.9 (52.9-78.3)	75.6 (51.6-83.4)	72.2 (57.8-81.6)
median(IQR)	(n=22)	(n=22)	(n=26)	(n=45)
一般病棟, median(IQR)	56.9 (42.6-68.0)	62.8 (48.4-75.1)	67.9 (48.4-78.6)	67.6 (47.2-77.2)
	(n=44)	(n=41)	(n=48)	(n=93)
その他病棟, median(IQR)	59.1 (39.0-75.2)	68.3 (42.6-82.6)	64.0 (52.0-75.4)	65.0 (49.8-79.7)
	(n=22)	(n=26)	(n=26)	(n=55)

(表のnは施設数、施設毎の手指衛生遵守率の分布を表示)

表 42 病院における手指消毒剤使用量の分布(1,000 患者日あたりの使用量:L)

	2019	2020	2021	2022
全体, median(IQR)	7.41 (4.21-11.42)	9.63 (5.69-14.48)	10.39 (6.66-16.50)	10.39 (6.49-15.64)
	(n=198)	(n=245)	(n=321)	(n=988)
クリティカルケア領域,	33.61 (18.51-58.52)	41.15 (28.67-76.19)	52.43 (28.85-86.57)	45.34 (26.70-69.83)
median(IQR)	(n=111)	(n=120)	(n=159)	(n=364)
一般病棟, median(IQR)	7.35 (4.71-12.16)	9.12 (6.36-14.83)	9.85 (6.70-15.58)	10.28 (6.96-15.16)
	(n=184)	(n=219)	(n=290)	(n=829)
その他病棟, median(IQR)	6.31 (3.98-12.84)	8.95 (4.91-15.57)	10.12 (5.71-17.53)	9.86 (5.64-16.23)
	(n=125)	(n=168)	(n=227)	(n=731)

(表のnは施設数、施設毎の手指衛生使用量の分布を表示)

表 43 血流感染症の患者における推定死亡数(人)

	2015	2016	2017	2018	2019	2020	2021	2022
S. aureus (95% CI) *	7,372	7,935	8,070	8,187	8,732	7,510	8,039	9,528
3. dureus (35% CI)	(5,721-9,047)	(6,172-9,725)	(6,271-9,885)	(6,361-10,034)	(6,793-10,693)	(5,399-9,624)	(5,776-10,316)	(7,387-11,620)
MRSA (95% CI)	3,608	3,758	3,716	3,690	3,966	3,633	3,917	3,938
WINSA (35% CI)	(2,357-4,873)	(2,453-5,078)	(2,428-5,029)	(2,411-4,979)	(2,590-5,363)	(2,516-4,901)	(2,715-5,288)	(2,602-5,386)
S. pneumoniae (95% CI) *	480	430	447	463	410	247	204	198
3. prieumomae (33% Ci)	(160-879)	(144-787)	(149-818)	(154-846)	(137-750)	(82-453)	(68-374)	(66-363)
DDCD (0E0/ CI)	126	108	94	113	106	77	74	60
PRSP (95% CI)	(42-231)	(36-198)	(31-173)	(38-206)	(35-194)	(26-141)	(25-136)	(20-101]
F/:/0F0/ CI*	7,130	7,636	8,001	8,154	8,666	8,527	8,713	8,542
E. coli (95% CI) *	(5,701-8,643)	(6,111-9,251)	(6,404-9,688)	(6,523-9,890)	(6,921-10,506)	(6,829-10,240)	(6,983-10,481)	(6,843-10,311)
FOREC (95% CI)	2,889	3,310	3,376	3,753	4,201	4,118	4,170	4,172
FQREC (95% CI)	(2,715-3,071)	(3,113-3,528)	(3,173-3,591)	(3,534-3,994)	(3,955-4,467)	(3,876-4,394)	(3,920-4,445)	(3,930-4,434)
00050 (05% 01)	2,146	2,252	2,377	2,647	3,009	2,890	3,028	2,970
3CREC (95% CI)	(1,155-3,300)	(1,212-3,462)	(1,280-3,660)	(1,425-4,074)	(1,620-4,625)	(1,559-4245)	(1,635-4,445)	(1,601-4,565)
Klebsiella pneumoniae	4,167	4,218	4,311	4,561	4,506	4,484	4,529	4,659
(95% CI)*	(3,171-5,276)	(3,207-5,318)	(3,275-5,437)	(3,466-5,755)	(3,424-5,704)	(3,405-5,668)	(3,444-5,727)	(3,453-5,840)
2001/0 (050/ 01)	474	492	461	533	530	597	682	762
3CRKP (95% CI)	(344-608)	(359-633)	(334-592)	(386-685)	(385-680)	(432-761)	(495-870)	(572-974)
Pseudomonas aeruginosa	2,036	2,109	2,074	2,188	2,243	2,139	2,344	2,282
(95% CI)*	(1,320-2,855)	(1,369-2,957)	(1,345-2,909)	(1,418-3,069)	(1,455-3,148)	(1,385-2,996)	(1,516-3,282)	(1,373-3,197)
0004 (050(01)	343	369	303	318	324	344	399	323
CRPA (95% CI)	(296-388)	(318-418)	(263-343)	(275-360)	(280-367)	(297-388)	(345-448)	(281-366)

MRSA; methicillin resistant *S. aureus*, PRSP; penicillin resistant *Streptococcus pneumoniae*, FQREC; fluoroquinolone resistant *E. coli*, 3CREC; 3rd generation Cephalosporine resistant *Klebsiella pneumoniae*, CRPA; Carbapenem resistant *Pseudomonas aeruginosa*.

[†]推定死亡者数の算出方法は Tsuzuki らの報告 (Tsuzuki S et al. ///D 2021. DOI: 10.1016/j.ijid.2021.05.018) に準じた。JANIS データに基づいて各年の参加施設数の病床数と実際の病床数から菌血症の全数を推定した。これに先行研究から得た微生物ごとの死亡率を乗じて推定死亡者数とした。微生物ごとの菌血症による死亡率は上記文献の補遺(https://www.ijidonline.com/article/S1201-9712(21)00419-7/fulltext#supplementaryMaterial) に記載されている。

^{*} S. aureus は MRSA、S. pneumoniae は PRSP、 E. coli は FQREC もしくは 3CREC、(FQREC、3CREC はそれぞれの薬剤に耐性である菌を独立に算出)、 Klebsiella pneumoniae は 3CRKP、 Pseudomonas aeruginosa は CRPA を含んだ集計。括弧内は 95%信頼区間を表す。

⑨ 療養病床および高齢者施設における感染症および抗菌薬使用に関する調査 データ元: AMRCRC

AMRCRC では、厚生労働科学研究費補助金を用いて、高齢者施設における医療関連感染症および 抗菌薬使用に関する調査を行っている⁹。

i. 医療療養病床

日本慢性期医療協会加盟より無作為に医療療養病床 1,175 施設を抽出し、Point Prevalence Survey (PPS) を行った (2020 年 1 月調査)。回収は 80 施設(回収率 7.8%)であった。患者年齢の中央値は、84.0 歳 (78,90)だった。男性患者の年齢の中央値は、82.0 歳 (75,87.8)、女性患者の年齢の中央値は、87.0 歳 (80.8,92)だった。感染巣の上位は、「肺炎」199 人 (39.5%)、「尿路感染症」135 人 (26.8)、「気管支炎」19 人 (3.8%)であった。主に使用される抗菌薬は、注射第 3 世代セファロスポリン系、経口キノロン系、カルバペネム系、ペニシリン系であった。

ii. 介護老人保健施設(老健)

全国老人保健施設協会の加盟施設から無作為に施設を抽出し、PPS を行った。第 1 回 PPS (2019 年 2 月調査、1,500 施設) の回収は 134 施設(回収率 8.9%)、第 2 回 PPS (2022 年 2 月調査、1,000 施設) の回収は 100 施設(回収率 10.0%)であった。

第1回 PPS の抗菌薬使用率は1.7%(抗菌薬使用者172人、入所者総数10,148人)だった。 年齢中央値は86歳(IQR:81-91)、男性中央値は84歳(IQR:75-89)、女性中央値は87歳(IQR:83-92)であった。感染巣の上位は、「尿路感染症」73人(47.7%)、「肺炎」31人(20.3%)、「上気道炎」15人(9.8%)であった。尿路感染症および肺炎で主に使用される抗菌薬は、フルオロキノロン系および第3世代セファロスポリン系であった。

第2回 PPS の抗菌薬使用率は1.3%(抗菌薬使用者110人、入所者総数8,291人)だった。年齢中央値は89歳(IQR:84-93)、男性中央値は85歳(IQR:80.5-89.5)、女性中央値は89歳(IQR:86.5-94.0)であった。感染巣の上位は、「尿路感染症」47人(51.6%)、「肺炎」14人(15.4%)、「蜂窩織炎」7人(7.7%)であった。尿路感染症および肺炎で主に使用される抗菌薬は、経口フルオロキノロン系および注射用第3世代セファロスポリン系であった。

iii. 介護老人福祉施設(特別養護老人ホーム)

全国老人福祉施設協議会加盟より無作為に介護老人福祉施設 1,500 施設を抽出し、PPS を行った (2020 年 3 月調査)。回収は 139 施設 (回収率 9.3%) であった。年齢中央値は 90.0 歳 (IQR: 85,93)、男性中央値は 80.5 歳 (IQR: 76,90)、女性中央値は 92.0 歳 (IQR: 87,93) であった。感染巣の上位は、「尿路感染症」23 人 (31.17%)、「肺炎」11 人 (14.9%)、「上気道炎」9 人 (12.2%) であった。尿路感染症で主に使用される抗菌薬は、経口キノロン系、肺炎で主に使用される抗菌薬は、注射用第 3 世代セファロスポリン系であった。

表 44 療養病床および高齢者施設における抗菌薬使用状況

施設[回答施設数]	抗菌薬使用率 (調査日の抗菌薬使用者/入所 者)	抗菌薬使用された主要感染症	主要抗菌薬種類 (全感染症)
医療療養病床 (医療機関) [82]	9.4% (630/6,729)	肺炎 (39.5%) 尿路感染症 (26.8%) 気管支炎 (3.8%)	注射第3世代セファロスポリン 系 経口フルオロキノロン系 カルバベネム系 ベニシリン系
介護老人保健施設(老健)	1.7% (172/10,148)	尿路感染症(51.3%) 肺炎 (24.3%) 上気道炎 (9.9%)	第3世代セファロスポリン系 フルオロキノロン系 ベニシリン系
第一回 [126] 第二回 [98]	1.3% (110/8,291)	尿路感染症(51.6%) 肺炎 (15.4%) 蜂窩織炎 (7.7%)	注射第 3 世代セファロスポリン 系 経口フルオロキノロン系 ペニシリン系
介護老人福祉施設 (特別養護老人ホーム) [137]	1.0% (94/9,044)	尿路感染症(31.1%) 肺炎 (14.9%) 上気道炎 (12.2%)	注射第3世代セファロスポリン 系 経口フルオロキノロン系 経口ペニシリン系

引用文献

- 1. 小西典子ら. "厚生労働科学研究費補助金(食品の安全確保推進研究事業)平成 28 年度 分担研究報告書 食品由来薬剤耐性菌の発生動向及び衛生対策に関する研究 分担課題 ヒトおよび食品由来腸内細菌の薬剤耐性の疫学的研究"2018.
- 2. 四宮博人ら. "厚生労働科学研究費補助金(食品の安全確保推進研究事業)平成 28 年度 分担研究報告書 食品由来薬剤耐性菌の発生動向及び衛生対策に関する研究 分担課題 全国地方衛生研究所において分離される薬剤耐性菌の情報収集体制の構築"2018.
- 3. Galdys AL, et al. "Prevalence and duration of asymptomatic *Clostridium difficile* carriage among healthy subjects in Pittsburgh, Pennsylvania." J Clin Microbiol. 2014;52(7): 2406-9.
- 4. Evans CT, et al. "Current Trends in the Epidemiology and Outcomes of *Clostridium difficile* Infection" Clin Infect Dis 2015; 60 (suppl_2): S66-S71.
- 5. T. V. Riley, T. Kimura. "The Epidemiology of *Clostridium difficile* Infection in Japan: A Systematic Review" Infect Dis Ther. 2018;7: 39–70.
- 6. Kato H, Senoh M, Honda H, et al. "Clostridioides (Clostridium) difficile infection burden in Japan: A multicenter prospective study." Anaerobe 2019.
- 7. 厚生労働省 院内対策サーベイランス事業 . "SSI 部門 JANIS(一般向け)期報・年報." https://janis.mhlw.go.jp/report/ssi.html
- 8. 厚生労働省 院内対策サーベイランス事業 . "ICU 部 門 JANIS(一般向け)期報・年報." https://janis.mhlw.go.jp/report/icu.html
- 9. 鈴木久美子ら. "厚生労働行政推進調査事業費新興・再興感染症及び予防接種政策推進研究事業「薬剤耐性(AMR)アクションプランの実行に関する研究(H29-新興行政-指定-005)」介護老人保健施設における医療関連感染症および抗菌薬使用に関する研究"2019

(2)動物

① 家畜由来細菌

データ元:動物由来薬剤耐性菌モニタリング(JVARM)

JVARM では、CLSI に準拠した微量液体希釈法による薬剤感受性試験を実施し、収集した各種菌株の抗菌剤の MIC を測定している。なお、ブレイクポイント(BP)は、CLSI で規定されている薬剤についてはその値を採用し、CLSI で規定されていない薬剤については、EUCAST で規定されている値又は微生物学的 BP(二峰性を示す MIC 分布の中間点)を採用した。これらの方法で BP を設定できない薬剤については、耐性率を算出できないことから表中に掲載しないこととした。

病畜由来細菌

病畜由来細菌については、家畜保健衛生所において病性鑑定を実施した家畜から分離された菌を調査対象とした。菌分離部位については、Salmonella spp.では主に糞便、消化管及び肝臓から、Staphylococcus spp.では主に乳汁及び乳房から、Escherichia coliでは主に糞便、消化管及び肺から分離された。

i . Salmonella spp.

2011 年から 2018 年は 11 薬剤、2019 年以降はメロペネム(MEPM)を加えた 12 薬剤を対象として調査を行った。2021 年に収集された牛及び豚由来株の耐性率については、テトラサイクリン(TC)に対して 40%を超える耐性が認められた。一方ヒトの医療で重要な抗菌剤であるセフォタキシム(CTX)及びシプロフロキサシン(CPFX)の豚由来株での耐性率は 5%未満であり、牛由来株では CTX 26.5%、CPFX 2%であり、MEPM に対する耐性率は牛、豚及び鶏ともに 0.0%であった。なお 2016 年から、セファゾリン(CEZ)、コリスチン(CL)及び CPFX は CLSI の変更後の低い BP に変更している点に留意する必要がある。また、2014 年から 2020 年に病畜から分離されたサルモネラの血清型は、牛では S. Typhimurium 及びその単相変異型である S. S. A:i:-が多く、豚では、S. Typhimurium、S. Choleraesuis 及び S. S. A:i:-が、鶏では、S. Schwarzengrund、S. Infantis 及び S. Enteritidis が多かった。2021 年度に収集された株では、牛で S. Dublin の分離率が増加しており、その全でで CTX 及び CL 耐性であった。血清型別の耐性率については、豚由来の S. Choleraesuis ではアンピシリン(ABPC)、TC に対して 50%を超える耐性が認められた。また牛及び豚由来の S. 4:i:-では ABPC 及び TC、鶏由来の S. Infantis では TC、鶏由来の S. Schwarzengrund ではカナマイシン(KM)及び TC に対していずれも 70%を超える耐性が認められた。一方ヒトの医療で重要な抗菌剤である CTX 及び CPFX に対する耐性率はいずれの血清型においても 10%未満であった。

表 45 病性鑑定材料から分離された Salmonella spp.の耐性率の推移 (%)

		-1											
薬剤	ВР	動物種	2011年	2012年	2013年	2014年	2015 年	2016年	2017年	2018年	2019年	2020年	2021年
		牛	28.0	32.9	60.7	61.9	56.6	50.0	40.7	36.8	56.1	39.2	42.9
ABPC	32*	豚	25.4	25.3	45.0	41.4	46.9	41.1	40.9	50.0	50.7	38.5	25.8
		鶏	12.0	9.4	4.0	3.9	14.3	-	-	4.5	18.8	0.0	0.0
	32	牛	10.0	1.2	8.9	7.9	7.9	22.9	5.1	3.5	19.3	19.6	30.6
CEZ	(2016年よ	豚	0.0	0.0	0.0	0.0	6.1	23.2	6.8	9.4	18.8	13.5	0.0
	り 8*)	鶏	0.0	3.1	4.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0
		牛	10.0	1.2	8.9	7.9	7.9	4.3	1.7	0.0	1.8	0.0	26.5
CTX	4*	豚	0.0	0.0	0.0	0.0	4.1	0.0	0.0	0.0	0.0	1.9	0.0
		鶏	0.0	0.0	4.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0
		牛	-	-	-	-	-	-	-	-	0.0	0.0	0.0
MEPM	4*	豚	-	-	-	-	-	-	-	-	0.0	0.0	0.0
		鶏	-	-	-	-	-	-	-	-	0.0	0.0	0.0
		#	0.0	0.0	0.0	3.2	7.9	4.3	1.7	1.8	1.8	17.6	14.3
GM	16*	豚	6.3	3.6	15.0	15.5	8.2	17.9	15.9	4.7	7.2	15.4	0.0
		鶏	0.0	0.0	2.0	0.0	0.0	-	-	0.0	18.8	0.0	0.0
		#	12.0	3.7	25.0	14.3	21.1	25.7	5.1	0.0	8.8	3.9	4.1
KM	64*	豚	9.5	12.0	6.7	8.6	6.1	10.7	13.6	4.7	18.8	13.5	3.2
		鶏	24.0	15.6	22.0	29.4	42.9	-	-	63.6	62.5	37.5	57.1
		#	30.0	32.9	66.1	50.8	55.3	42.9	39.0	33.3	56.1	43.1	44.9
TC	16*	豚	61.9	53.0	66.7	60.3	61.2	58.9	50.0	50.0	44.9	44.2	48.4
		鶏	36.0	34.4	30.0	39.2	42.9	-	-	77.3	68.8	81.3	71.4
		#	2.0	7.3	1.8	3.2	11.8	5.7	5.1	1.8	1.8	25.5	38.8
NA	32*	豚	15.9	21.7	5.0	15.5	6.1	7.1	9.1	20.3	24.6	19.2	16.1
		鶏	8.0	6.3	8.0	3.9	28.6	-	-	0.0	43.8	37.5	42.9
	4	#	0.0	0.0	0.0	0.0	0.0	0.0	1.7	1.8	1.8	0.0	2.0
CPFX	(2016年よ	豚	0.0	0.0	0.0	0.0	0.0	3.6	4.5	4.7	1.4	0.0	3.2
	り 1*)	鶏	0.0	0.0	0.0	0.0	0.0	-	-	0.0	18.8	0.0	0.0
	16	#	0.0	0.0	0.0	0.0	0.0	1.4	5.1	0.0	1.8	0.0	26.5
CL	(2016年よ	豚	0.0	0.0	1.7	0.0	0.0	3.6	4.5	6.3	8.7	3.8	3.2
	り 4*)	鶏	0.0	3.1	2.0	0.0	0.0	-	-	18.2	18.8	6.3	28.6
		#	14.0	12.2	10.7	17.5	22.4	12.9	3.4	3.5	28.1	2.0	26.5
CP	32*	豚	12.7	13.3	11.7	25.9	12.2	8.9	18.2	21.9	10.1	17.3	9.7
		鶏	0.0	6.3	6.0	3.9	14.3	-	-	0.0	0.0	0.0	0.0
ST (2012~	76/4*	#	2.0	1.2	1.8	6.3	13.2	4.3	3.4	1.8	24.6	3.9	2.7
2016年:	(TMP は 16*)	豚	25.4	21.7	36.7	32.8	22.4	21.4	25.0	12.5	24.6	21.2	3.2
TMP)	20 /	鶏	20.0	15.6	14.0	29.4	42.9	-	-	59.1	50.0	37.5	14.3
		牛	50	82	56	63	76	70	59	57	57	51	49
検査権	朱数(n)	豚	63	83	60	58	49	56	44	64	69	52	31
		鶏	25	32	50	51	7	-	-	22	16	16	7
	単位/+ ug/ml												

^{*} CLSI に規定された BP。

^{-:}調査をしていない区分。

表 46 病畜由来 Salmonella enterica の血清型別分離株数(2011-2021)

血清型	#	豚	鶏	合計	(%)
Typhimurium	200	264	4	468	29.1
4:i:-	221	116	0	337	20.9
Choleraesuis	3	117	2	122	7.6
Schwarzengrund	9	3	65	77	4.8
Derby	2	31	0	33	2.0
Infantis	21	12	42	75	4.7
Braenderup	7	2	10	19	1.2
Newport	19	7	5	31	1.9
Mbandaka	11	1	12	24	1.5
Thompson	25	2	7	34	2.1
Enteritidis	2	1	16	19	1.2
Dublin	38	0	0	38	2.4
Rissen	21	15	0	36	2.2
Stanley	27	3	0	30	1.9
Tennessee	0	0	8	8	0.5
Others	142	60	58	260	16.1
合計	748	634	229	1611	100.0

表 47 病畜由来 Salmonella enterica の血清型別耐性率(2011-2021)

		Typhir	nurium	4:	ii:-	Choleraesuis	Infantis	Schwarzengrund
薬剤	ВР	牛 (n=200)	豚 (n=264)	牛 (n=230)	豚 (n=120)	豚 (n=137)	鶏 (n=41)	鶏 (n=61)
ABPC	32*	48.0	26.5	87.4	68.3	43.8	4.9	4.9
CEZ	8*	12.5	5.7	18.7	14.2	5.1	0.0	0.0
CTX	4*	7.0	0.0	3.0	0.0	1.5	0.0	0.0
GM	16*	1.0	4.2	10.4	10.8	23.4	0.0	0.0
KM	64*	27.0	4.9	6.5	6.7	26.3	46.3	78.7
TC	16*	41.5	41.3	86.5	80.8	62.8	80.5	96.7
NA	32*	9.5	10.6	10.9	13.3	29.9	12.2	23.0
CPFX	1*	0.0	3.0	0.9	1.7	0.0	0.0	0.0
CL	4*	0.5	3.8	1.3	5.0	0.0	4.9	3.3
CP	32*	19.5	20.8	14.8	12.5	10.9	2.4	3.3
ST (TMP) **	76/4* (TMP は 16)	4.5	19.7	11.7	7.5	23.4	43.9	67.2

BP の単位は μg/mL。* CLSI に規定された BP。** 2012 年から 2016 年は TMP

ii . Staphylococcus aureus

2011年から2018年は7薬剤、2019年からは、更にオキサシリン(MPIPC)を加えた8薬剤を対象に調査を行った。2021年の豚由来株では、TCに対しては50%を超える耐性が認められた。また、全ての薬剤において、豚由来株で牛及び鶏由来株に比べて高い耐性率が認められた。ヒトの医療で重要な CPFX に対する耐性率は、牛及び鶏由来株では1%以下であったが、豚由来株では13.6%であった。

表 48 病性鑑定材料から分離された Staphylococcus aureus の耐性率の推移 (%)

薬剤*	BP	動物種	2011年	2012 年	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年
ABPC(2019 年よ	0.5	#	5.5	13.6	11.0	11.1	21.3	7.8	7.4	9.3	6.4	7.0	2.0
		豚	-	-	=	=	=	75.6	71.4	82.4	87.5	81.0	81.8
		鶏	0.0	25.0	0.0	15.4	50.0	3.7	22.6	8.0	0.0	12.5	0.0
MPIPC	4†	#	-	-	-	-	-	-	-	-	2.4	0.8	0.0
		豚	-	-	-	-	-	-	-	-	15.0	4.8	0.0
		鶏	-	-	-	-	-	-	-	-	0.0	0.0	0.0
SM	64	#	6.4	2.3	2.8	1.1	2.7	1.4	3.4	5.8	8.0	4.7	5.9
		豚	-	-	-	-	-	33.3	20.4	39.2	17.5	19.0	31.8
		鶏	0.0	10.0	0.0	7.7	16.7	3.7	0.0	0.0	0.0	0.0	15.0
GM	16 †	#	0.9	2.3	1.8	0.0	1.3	0.0	0.6	0.0	0.0	0.8	0.0
		豚	-	-	=	=	=	2.2	14.3	11.8	7.5	4.8	4.5
		鶏	0.0	15.0	0.0	0.0	0.0	3.7	9.7	4.0	0.0	0.0	0.0
EM	8†	#	1.8	3.4	5.5	0.0	6.7	2.8	1.7	5.8	4.8	3.9	1.0
		豚	-	-	=	=	=	37.8	38.8	52.9	52.5	33.3	18.2
		鶏	50.0	55.0	0.0	15.4	16.7	22.2	6.5	4.0	17.6	4.2	5.0
TC	16 †	#	0.0	2.3	8.3	5.5	6.7	0.0	0.0	0.6	2.4	0.8	2.0
		豚	-	-	=	=	=	57.8	53.1	60.8	77.5	57.1	54.5
		鶏	37.5	5.0	0.0	16.7	16.7	33.3	19.4	20.0	17.6	20.8	5.0
СР	32 †	#	0.0	0.0	0.9	0.0	1.3	0.0	0.6	0.6	1.6	0.0	5.9
		豚	-	-	-	-	-	22.2	30.6	43.1	37.5	28.6	22.7
		鶏	0.0	0.0	0.0	15.4	33.3	3.7	3.2	8.0	0.0	12.5	5.0
CPFX	4†	#	0.0	0.0	0.9	0.0	1.3	0.7	0.6	0.0	1.6	1.6	1.0
		豚	-	-	-	-	-	11.1	8.2	23.5	5.0	23.8	13.6
		鶏	25.0	0.0	4.2	15.4	33.3	3.7	3.2	2.8	0.0	16.7	0.0
検査株数(n)		#	109	88	109	91	75	141	175	172	125	128	101
		豚	-	-	-	-	-	45	49	51	40	21	22
		鶏	8	20	24	12	6	27	31	25	17	24	20

^{-: 2015}年までの豚由来株については、いずれの年も株数が5株未満であったため、掲載していない。

^{*} NA についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

[†]CLSI に規定された BP。

iii. Escherichia coli

2012 年から 2018 年に 12 薬剤、2019 年から 2021 年に 13 薬剤を対象に調査を行った。2021 年は、牛、豚及び鶏由来株では ABPC、SM 及び TC、豚由来株ではクロラムフェニコール(CP)及び ST、鶏由来株では NA に対して 50%を超える耐性が認められた。また、13 薬剤中 7 薬剤に対して豚 由来株で牛及び鶏由来株に比べ高い耐性率が認められた。ヒトの医療で重要な CTX、CPFX 及び CL に対する耐性率は、それぞれ $8.0\sim13.9\%$ 、 $21.6\sim31.7\%$ 及び $0.0\sim23.9\%$ であり、MEPM に対する耐性率は 0.0%であった。なお、2016 年から、CEZ 及び CL、2019 年から CPFX について CLSI で変更後の BP を用いている点に留意する必要がある。CL については、2018 年に飼料添加物としての指定を取り消し、使用を禁止したほか、動物用医薬品としては第二次選択薬に位置付け、その使用を制限している。CL に対する耐性率は、2017 年で豚由来株で 50%以上を示したが、2021 年の耐性率は 23.9%と減少しており、引き続きこれらのリスク管理措置の強化による今後の耐性率の動向を確認していく必要がある。

表 49 病性鑑定材料から分離された Escherichia coli における耐性率の推移 (%)

, ,	,,,_,						1.43 1 1	3 - 12 (· · · ·	,			
薬剤	BP	動物種	2012 年	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021 年
		牛	-	61.4	57.8	63.8	37.7	50.0	51.7	62.8	63.8	52.8
ABPC	32*	豚	-	65.2	50.4	57.4	74.5	70.7	62.8	68.3	61.2	63.6
		鶏	75.6	54.2	-	60.4	43.5	33.3	52.9	47.5	56.8	55.0
	0*/ 0015	牛	-	21.1	6.7	14.9	15.6	15.6	17.2	28.7	27.7	18.5
CEZ	8*(~2015:	豚	-	10.1	6.1	9.3	34.3	35.0	21.5	23.8	17.6	21.6
	BP 32)	鶏	40.2	16.7	-	14.6	15.2	11.1	17.6	20.0	13.5	13.3
		#	-	10.5	6.7	8.5	7.8	8.9	9.2	14.9	22.3	13.9
CTX	4*	豚	-	2.5	0.0	3.7	2.9	3.3	3.3	5.0	2.4	8.0
		鶏	37.8	14.6	-	10.4	6.5	5.6	11.8	7.5	8.1	11.7
		#	-	-	68.9	78.7	49.4	61.1	57.5	63.8	63.8	61.1
SM	32	豚	-	-	64.3	66.7	74.5	72.4	54.5	65.3	61.2	62.5
		鶏	-	-	-	60.4	56.5	38.9	51.0	65.0	67.6	61.7
		牛	-	17.5	6.7	12.8	10.4	8.9	10.3	8.5	11.7	7.4
GM	16*	豚	-	24.1	8.7	19.4	21.6	22.8	13.2	12.9	14.1	22.7
		鶏	6.1	3.1	-	2.1	10.9	5.6	2.0	5.0	10.8	0.0
		牛	-	38.6	26.7	29.8	16.9	26.7	28.7	31.9	29.8	22.2
KM	64*	豚	-	34.2	33.9	31.5	46.1	39.0	32.2	27.7	24.7	25.0
		鶏	51.2	35.4	-	39.6	50.0	36.1	27.5	25.0	37.8	33.3
		牛	-	50.9	66.7	66.0	54.5	62.2	58.6	66.0	66.0	63.0
TC	16*	豚	-	79.1	75.7	75.9	87.3	78.9	70.2	69.3	69.4	80.7
		鶏	74.4	61.5	-	70.8	78.3	55.6	72.5	60.0	70.3	63.3
		牛	-	-	-	-	-	-	-	0.0	0.0	0.0
MEPM	4*	豚	-	-	-	-	-	-	-	0.0	0.0	0.0
		鶏	-	-	-	-	-	-	-	0.0	0.0	0.0
		牛	-	29.8	33.3	36.2	18.2	33.3	33.3	36.2	34.0	28.7
NA	32*	豚	-	60.1	52.2	50.0	48.0	50.4	33.1	27.7	32.9	38.6
		鶏	73.2	59.4	-	52.1	56.5	55.6	35.3	60.0	32.4	61.7
	1*(~2018:	牛	-	19.3	24.4	34.0	11.7	17.8	21.8	28.7	28.7	25.0
CPFX	BP 4*)	豚	-	36.1	23.5	32.4	24.5	28.5	22.3	15.8	20.0	21.6
	DP 41)	鶏	22.0	25.0	-	8.3	8.7	11.1	11.8	35.0 ^{§1}	18.9	31.7
	4*(~2015:	牛	-	5.3	6.7	0.0	10.4	20.0	11.5	11.7	1.1	0.9
CL	4 · (~2015: BP16*)	豚	-	3.2 § 2	0.0 § 2	2.8 § 2	56.9	52.0	35.5	27.7	27.1	23.9
	DL10.)	鶏	2.4	1.0	-	0.0	8.7	0.0	2.0	10.0	0.0	0.0
		牛	-	21.1	28.9	46.8	19.5	28.9	31.0	38.3	40.4	35.2
CP	32*	豚	-	64.6	64.3	61.1	69.6	59.3	57.0	55.4	57.6	61.4
		鶏	22.0	25.0	-	16.7	21.7	11.1	21.6	15.0	32.4	18.3
ST	76/1*	牛	-	22.8	33.3	44.7	23.4	35.6	42.5	41.5	40.4	33.3
(2012 年から	76/4*	豚	-	49.4	59.1	64.8	62.7	56.9	52.9	57.4	51.8	53.4
2017 年は TMP)	(TMP: 16*)	鶏	31.7	33.3	-	33.3	23.9	13.9	19.6	35.0	24.3	31.7
		牛	=	57	45	47	77	90	87	94	94	108
検査権	朱数(n)	豚	-	158	115	108	102	123	121	101	85	88
		鶏	82	96	_	48	46	36	51	40	37	60

BP の単位は $\mu g/mL$ 。

^{*} CLSI に規定された BP。変更以前の年の耐性率は変更前の BP にもとづくもの。

^{-:}調査を実施していない区分。

^{§1} 鶏由来株の CPFX について、2018 以前の BP: 4 を採用した場合の 2019 年度の耐性率は 22.5%。

 $[\]S^2$ 豚由来株の CL について、2016 以降の BP: 4 μ g/mL を採用した場合の 2013、2014、2015 年度の耐性率はそれぞれ 42.4%、44.3% 及び 62.0%。

健康家畜由来細菌

健康家畜由来の食品媒介性病原細菌及び指標菌については、と畜場及び食鳥処理場において採取した糞便を用いて調査した。なお、JVARM の開始当初は家畜保健衛生所が農場において採取した対象家畜の糞便を検体とした調査を実施していたが、2012 年度より集約的なサンプリングが可能でより食品に近いことから、と畜場及び食鳥処理場における調査が並行して開始された。両調査での成績に大きな違いがないことが確認された 2016 年度から健康家畜由来細菌については、と畜場及び食鳥処理場モニタリングに移行した。

i . Escherichia coli

2012 年から 2017 年に 12 薬剤、2018 年以降は更に MEPM を加えた 13 薬剤を対象に調査を行った。2021 年は、豚及び鶏由来株の TC、鶏由来株の ABPC、SM 及び KM で 40%を超える耐性が認められた。ヒトの医療で重要な CTX、CPFX 及び CL に対する耐性率は、それぞれ 5%未満、15%未満及び 5%未満であり、MEPM に対する耐性率は 0.0%であった。

表 50 と畜場及び食鳥処理場由来の Escherichia coli の耐性率の推移 (%)

薬剤	BP	動物種	2012 年	2013年	2014年	2015年	2016年	2017年	2018年	2019 年	2020年	2021 年
		牛	2.4	6.5	3.0	5.5	7.4	4.8	11.6	6.3	5.1	5.0
ABPC	32*	豚	32.3	26.0	43.0	34.4	36.7	33.7	34.9	32.5	44.1	33.3
		鶏	30.8	35.5	40.1	43.5	35.4	39.3	36.1	36.7	30.6	40.7
	8*	#	0.4	0.3	0.0	0.0	1.9	0.8	0.5	1.0	0.4	1.1
CEZ	(2015 年以	豚	1.0	8.0	1.1	1.0	6.7	1.2	2.4	3.8	1.1	2.0
	前は 32)	鶏	3.0	7.8	5.8	3.8	10.1 § 1	6.7 ^{§1}	7.7 § 1	4.7 ^{§1}	6.6	3.4
		牛	0.0	0.0	0.4	0.0	0.4	0.4	0.0	0.7	0.0	0.0
CTX	4*	豚	0.0	0.0	1.1	0.0	1.1	1.2	0.0	2.5	0.0	2.0
		鶏	1.5	4.8	4.1	2.2	5.1	4.7	3.2	3.1	4.1	2.1
		#	_	_	-	-	-	-	0.0	0.0	0.0	0.0
MEPM	4*	豚	_	_	_	_	_	_	0.0	0.0	0.0	0.0
		鶏	_	_	_	_	_	-	0.0	0.0	0.0	0.0
		牛	14.9	12.3	17.1	12.4	22.1	19.0	18.5	19.7	14.6	18.0
SM	32	豚	44.1	44.9	52.7	39.6	50.0	41.0	49.4	41.3	45.2	24.5
		鶏	39.1	38.6	44.8	41.8	51.3	41.3	48.4	40.6	47.1	48.3
		牛	0.0	0.3	0.0	0.0	0.8	0.0	0.0	0.0	0.4	0.4
GM	16*	豚	0.5	2.4	6.5	2.1	3.3	3.6	3.6	2.5	1.1	1.0
		鶏	1.5	1.8	2.9	2.2	5.1	6.0	5.2	6.3	3.3	1.4
		#	1.2	1.5	0.4	0.7	4.3	1.2	0.0	0.7	0.4	0.8
KM	64*	豚	9.7	7.9	9.7	8.3	10.0	10.8	8.4	10.0	5.4	8.8
		鶏	24.1	24.1	33.1	37.5	43.0	36.7	43.9	37.5	31.4	44.8
		#	19.0	16.4	19.8	18.6	29.8	21.0	26.5	22.9	19.8	23.8
TC	16*	豚	58.5	62.2	59.1	45.8	56.7	55.4	55.4	47.5	62.4	52.0
		鶏	49.6	44.0	43.6	54.9	56.3	46.0	49.0	62.5	52.9	46.2
		#	2.4	1.8	2.3	2.6	2.3	2.0	2.1	1.4	3.2	1.9
NA	32*	豚	4.1	11.0	9.7	5.2	15.6	12.0	12.0	11.3	8.6	9.8
		鶏	39.8	36.1	45.3	35.9	35.4	39.3	40.6	36.7	48.8	37.2
	1*	#	0.0	0.6	0.8	0.0	0.4	0.0	0.5	0.3	0.4	0.0
CPFX	(~2019:	豚	1.5	0.8	2.2	3.1	4.4	0.0	1.2	2.5	2.2	2.0
	BP4*)	鶏	6.0	5.4	9.9	4.9	9.5	12.0	12.3	12.5	18.2	14.5
	4*	牛	0.0	0.0	0.8	0.0	0.4	1.2	0.0	0.3	0.0	0.0
CL	(2015 年以	豚	0.0	0.0	0.0	0.0	4.4 ^{§ 2}	2.4 ^{§ 2}	6.0 ^{§ 2}	2.5 ^{§ 2}	4.3	2.0
	前は 16)	鶏	0.8	0.6	0.0	0.5	1.9	3.3	0.0	0.0	0.8	0.0
		牛	5.2	2.3	3.8	2.9	2.3	2.8	4.8	4.2	5.9	6.5
CP	32*	豚	23.6	23.6	34.4	25.0	25.6	21.7	25.3	22.5	30.1	26.5
		鶏	11.3	11.4	15.1	9.8	19.6	11.3	17.4	15.6	20.7	9.7
		<u></u>	2.0	2.9	5.3	2.9	0.4	2.0	5.3	2.8	2.8	3.4
ST	76/4*	豚	23.6	26.8	34.4	30.2	4.4	26.5	32.5	23.8	25.8	30.4
	=, ,	鶏	24.8	31.9	30.2	28.3	27.8	34.7	33.5	30.5	22.3	23.4
		牛	248	341	263	274	258	252	189	288	253	261
検査	株数(n)	豚	195	127	93	96	90	83	83	80	93	102
八丑		鶏	133	166	172	184	158	150	155	128	121	145
	の単位は ug/m											110

^{*} CLSI に規定された BP。変更年より前の年の耐性率は変更前の BP にもとづく。

 $[\]S^1$ 鶏由来株の CEZ について、2015 以前の BP:32 μ g/mL を採用した場合の 2016、2017、2018 及び 2019 年度の耐性率は、それぞれ 7.0%、4.7%、3.2%及び 3.5%。

 $[\]S^2$ 豚由来株の CL について、2015 以前の BP: $16\,\mu g/mL$ を採用した場合の 2016、2017、2018 及び 2019 年度の耐性率は、それ ぞれ 1.1%、0.0%、0.0%及び 0.0%。

ii . Campylobacter jejuni

2012 年から 2016 年に 7 薬剤を、2017 年以降は更にアジスロマイシン(AZM)を加えた 8 薬剤を対象に調査を行った。2021 年は、牛由来株及び鶏由来株の NA 及び CPFX、牛由来の TC で 30%を超える耐性が認められた。一方で、SM 及び EM に対する耐性率はいずれも 5%未満であった。ヒトの医療で重要な CPFX 及び AZM に対する耐性率は、牛由来株で 60.5%及び 0.9%、鶏由来株で 33.9%及び 0.0%であった。

表 51 と畜場及び食鳥処理場由来の Campylobacter jejuni の耐性率の推移 (%)

薬剤*	BP	動物種	2012 年	2013 年	2014年	2015 年	2016年	2017年	2018年	2019年	2020年	2021年
ABPC	32	牛	0.0	9.1	12.9	8.9	7.4	8.2	8.6	11.4	8.2	10.5
ADPC	32	鶏	19.7	19.8	17.5	19.1	16.2	28.4	14.9	14.3	22.4	15.3
SM	16	牛	2.4	3.5	3.8	3.2	6.2	4.1	8.6	1.8	3.6	4.4
5101	10	鶏	1.4	0.0	3.5	2.1	8.8	1.5	0.0	0.0	2.0	0.0
EM	32 [†]	牛	0.0	0.7	0.0	1.3	0.0	0.0	5.7	0.0	2.7	0.9
	32	鶏	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	4.1	0.0
AZM	4	牛	_	-	_	_	-	0.0	5.7	0.0	2.7	0.9
AZIVI	4	鶏	_	-	_	_	-	1.5	0.0	0.0	4.1	0.0
TC	16†	牛	45.1	52.4	49.2	52.2	63.0	72.2	65.7	67.5	70.9	62.3
	10	鶏	38.0	44.4	38.6	28.7	33.8	46.3	23.4	34.3	22.4	28.8
СР	16	牛	0.0	6.3	0.0	1.3	1.2	6.2	2.9	6.1	0.9	6.1
	10	鶏	0.0	0.0	1.8	0.0	2.9	0.0	2.1	0.0	0.0	0.0
NA	16	牛	34.1	33.6	50.8	42.7	44.4	48.5	31.4	60.5	62.7	64.9
	10	鶏	39.4	48.1	29.8	27.7	57.4	46.3	31.9	37.1	32.7	44.1
CPFX	4 [†]	牛	34.1	29.4	49.2	40.8	44.4	50.5	31.4	59.6	62.7	60.5
- CITX	4	鶏	39.4	39.5	29.8	26.6	51.5	44.8	29.8	34.3	32.7	33.9
検査株数	t (n)	牛	82	143	132	157	81	97	35	114	110	114
1天且1个女	X (II)	鶏	71	81	57	94	68	67	47	35	49	59

^{*}GM についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

[†] CLSI に規定された BP。変更年より前の耐性率は変更前の BP にもとづく。

iii. Campylobacter coli

2012 年から 2016 年に 7 薬剤を、2017 年以降は更に AZM を加えた 8 薬剤を対象に調査を行った。 2021 年は、豚由来株で、SM 及び TC で 60%、NA 及び CPFX で 50%を超える耐性が認められた。一方、CP に対する耐性率は 3%未満であった。ヒトの医療で重要な CPFX に対する耐性率は 54.9%であり、AZM の耐性率は 33.8%であった。

表 52 と畜場由来の Campylobacter coli の耐性率の推移 (%)

薬剤*	BP	動物種	2012 年	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年
ABPC	32	豚	23.3	25.5	36.6	24.6	15.4	29.5	17.2	26.7	21.4	23.9
SM	32	豚	67.4	78.3	69.9	72.3	64.1	68.9	69.0	68.3	71.4	64.8
EM	32 [†]	豚	32.6	44.3	43.0	26.2	38.5	31.1	20.7	33.3	21.4	33.8
AZM	4	豚	-	-	_	-	-	31.1	20.7	31.7	21.4	33.8
TC	16 [†]	豚	84.5	93.4	80.6	87.7	89.7	83.6	86.2	78.3	73.8	76.1
CP	16	豚	10.9	3.8	7.5	9.2	15.4	1.6	3.4	3.3	2.4	2.8
NA	32	豚	46.5	53.8	52.7	47.7	61.5	50.8	58.6	45.0	52.4	54.9
CPFX	4 [†]	豚	46.5	46.2	50.5	47.7	59.0	54.1	58.6	40.0	50.0	54.9
検査株数	文 (n)	豚	129	106	93	65	39	61	29	60	42	71

BP の単位は µg/mL。

iv. Enterococcus spp.

2012 年及び 2014 年に 10 薬剤を、2015 年からは更にバンコマイシン(VCM)を加えた 11 薬剤を調査した。2018 年からは、ジヒドロストレプトマイシン(DSM)、オキシテトラサイクリン(OTC)及びエンロフロキサシン(ERFX)をそれぞれ SM、TC 及び CPFX に変更し、このうち SM については BP が設定されていないことから、SM を除く 10 薬剤を対象に耐性率の調査を行った。2021 年は、鶏由来株では KM、豚及び鶏由来株では TC に対して 40%を超える耐性が認められた。一方、ABPCに対する耐性率は、牛、豚及び鶏由来株でいずれも 1%未満であった。ヒトの医療で重要なフルオロキノロン系抗菌剤に属する CPFX に対する耐性率は 1.3~8.8%であった。また、ヒトの医療で重要な VCM に対する耐性率は 0.0%であった。

2021年は、*Enterococcus* spp.のうち、*E. faecalis* の菌株数の割合は 2.2%(牛由来 231 株中 5 株) ~37.3%(鶏由来 217 株中 81 株)、*E. faecium* の菌株数の割合は 1.3%(牛由来 231 株中 3 株)~ 11.1%(豚由来 117 株中 13 株)であった。ヒトの医療で重要なフルオロキノロン系抗菌剤に属する CPFX に対する耐性率は、*E. faecalis* で 0.0%(牛由来)~ 8.3%(豚由来)、*E. faecium* では、牛、豚及び鶏由来でそれぞれ 33.3%、23.1%及び 34.8%であり、牛及び鶏由来の *E. faecium* で高かった。

^{*}GM についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

[†]CLSI に規定された BP。

表 53 と畜場及び食鳥処理場由来の Enterococcus spp. の耐性率の推移 (%)

薬剤*	ВР	動物 種	2012年	2014年†	2015年	2016年	2017年	2018年	2019年	2020年	2021 年
		+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ABPC	16§	豚	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		鶏	0.0	0.6	0.0	0.0	0.0	0.0	0.8	0.5	0.5
		牛	85.6	31.2	14.9	2.9	0.8	-	-	-	-
DSM	128	豚	82.0	55.7	34.4	29.7	28.0	-	-	-	-
		鶏	69.2	30.9	49.2	30.6	27.0	-	-	-	-
		牛	61.2	4.2	2.2	0.8	0.0	13.5	3.1	8.6	2.2
GM	32	豚	43.3	3.4	3.1	4.4	1.2	19.0	10.0	6.5	2.6
		鶏	29.3	5.5	9.4	4.5	3.4	12.6	9.5	6.2	3.2
		牛	55.2	5.0	4.1	1.3	0.8	15.9	6.3	15.7	13.9
KM	128	豚	56.2	20.5	31.3	17.6	22.0	35.4	21.3	33.1	19.7
		鶏	68.4	37.0	47.0	41.4	41.9	61.6	49.2	48.2	40.6
		牛	24.4	21.2	27.1	27.6	26.4	-	-	-	-
ОТС	16	豚	61.9	54.5	59.4	64.8	58.5	-	-	-	_
		鶏	72.2	58.0	63.0	66.2	52.0	-	-	-	_
		牛	_	_	-	-	-	24.7	24.3	20.6	25.1
TC	16§	豚	-	-	-	-	_	58.2	55.0	59.7	48.7
		鶏	=	=	-	=	=	64.2	54.8	59.6	41.9
		<u></u>	1.5	0.0	0.0	0.4	0.4	0.6	0.4	0.4	0.4
СР	32 §	豚	17.5	17.0	10.4	15.4	14.6	15.2	11.3	16.1	10.3
		鶏	13.5	8.8	7.2	10.2	8.8	9.3	12.7	9.8	6.9
		 牛	5.0	3.8	1.5	2.5	2.1	1.8	2.4	3.7	4.3
EM	8§	豚	41.8	28.4	30.2	34.1	26.8	27.8	23.8	31.5	22.2
	Ū	鶏	50.4	43.1	42.5	45.2	41.2	36.4	34.9	36.8	26.3
		<u></u>	27.9	3.1	0.7	2.5	2.1	1.8	2.0	2.2	3.9
LCM	128	豚	59.8	50.0	34.4	37.4	35.4	36.7	41.3	39.5	29.1
20111	120	鶏	52.6	34.3	43.1	47.1	40.5	37.7	41.3	40.9	34.6
			6.0	1.2	0.4	0.8	0.0	-	-	-	-
ERFX	4	豚	22.7	9.1	2.1	1.1	3.7	_	_	_	_
		鶏	9.8	3.9	13.3	3.8	2.7	_	_	_	_
		<u></u>	-	-	-	-	-	2.4	1.6	0.4	1.3
CPFX	4 §	豚	_	_	_	_	_	17.7	7.5	4.8	5.1
OTTA	'	鶏	_	_	_	_	_	6.6	11.1	7.3	8.8
		-	2.0	2.3	0.7	2.1	2.5	1.8	2.4	2.2	4.3
TS	64	豚	33.0	21.6	19.8	28.6	24.4	26.6	23.8	29.8	17.9
	04	鶏	49.6	42.0	35.9	42.7	41.2	34.4	34.1	30.6	24.0
		——	- 49.0	- 42.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VCM	32	豚	_	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
v CIVI	JZ	鶏	-	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		—— 海 牛	201	260	269	289	242	170	255	267	231
検査	株数		194	260 88	96				255 80		
(n)	豚				91	82	79 151		124	117
P の単位		鶏	133	181	181	157	148	151	126	193	217

^{*} AZM、SM、NA、BC 及び SNM についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

^{† 2013} 年度は、と畜場由来の *Enterococcus* spp.の調査を実施していない。

[§] CLSI に規定された BP。

^{-:}調査を実施していない区分。

表 54 と畜場及び食鳥処理場由来の Enterococcus faecalis の耐性率の推移 (%)

薬剤*	ВР	動物 種	2012年	2014年†	2015年	2016年	2017年	2018年	2019年	2020年	2021年
		#	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ABPC	16§	豚	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		鶏	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		#	90.6	36.4	35.7	12.5	0.0	-	-	-	-
DSM	128	豚	88.2	62.5	100.0	43.5	38.5	-	-	-	-
		鶏	76.9	53.8	72.4	40.6	38.8	-	-	-	-
		#	68.8	27.3	0.0	0.0	0.0	40.0	0.0	16.7	20.0
GM	32	豚	76.5	12.5	15.4	8.7	7.7	31.0	35.7	17.9	4.2
		鶏	35.6	9.9	14.3	6.3	3.5	15.1	15.0	7.0	4.9
		#	71.9	9.1	14.3	0.0	0.0	46.7	0.0	25.0	40.0
KM	128	豚	72.9	12.5	69.2	30.4	30.8	51.7	42.9	53.8	20.8
		鶏	71.2	57.1	66.3	55.2	58.8	66.0	51.7	47.7	51.9
		牛	31.3	27.3	28.6	37.5	10.0	=	=	-	-
OTC 1	16	豚	64.7	87.5	92.3	73.9	84.6	-	-	-	-
		鶏	75.0	67.0	70.4	83.3	65.9	-	-	-	-
		牛	-	-	-	-	-	26.7	25.0	12.5	100.0
TC	16§	豚	-	-	-	-	-	65.5	57.1	66.7	54.2
		鶏	-	-	-	-	-	70.8	66.7	77.9	59.3
		牛	9.4	0.0	0.0	12.5	10.0	6.7	25.0	4.2	20.0
CP	32 §	豚	30.6	62.5	53.8	39.1	38.5	27.6	35.7	41.0	20.8
		鶏	17.3	13.2	9.2	15.6	12.9	11.3	20.0	14.0	12.3
		#	21.9	9.1	0.0	0.0	10.0	0.0	25.0	8.3	60.0
EM	8§	豚	51.8	62.5	69.2	52.2	61.5	44.8	50.0	56.4	37.5
		鶏	58.7	64.8	60.2	59.4	58.8	43.4	53.3	44.2	40.7
		牛	34.4	9.1	0.0	0.0	10.0	0.0	25.0	4.2	60.0
LCM	128	豚	76.5	75.0	92.3	56.5	61.5	51.7	50.0	59.0	37.5
		鶏	57.7	45.1	54.1	59.4	55.3	43.4	55.0	43.0	40.7
		#	3.1	0.0	0.0	0.0	0.0	-	-	-	-
ERFX	4	豚	5.9	0.0	7.7	0.0	0.0	-	-	-	-
		鶏	2.9	1.1	0.0	2.1	0.0	-	-	-	-
		牛	-	_	-	-	-	0.0	0.0	0.0	0.0
CPFX	4 §	豚	-	-	-	-	-	3.4	7.1	5.1	8.3
		鶏	-	-	-	-	-	2.8	3.3	0.0	4.9
		牛	6.3	0.0	0.0	0.0	10.0	0.0	25.0	4.2	60.0
TS	64	豚	50.6	62.4	69.2	52.2	61.5	44.8	50.0	56.4	37.5
		鶏	57.7	65.9	53.1	59.4	60.0	43.4	55.0	44.2	40.7
		牛	-	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VCM	32	豚	-	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		鶏	-	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
₩-	# ¥ <i>F</i>	#	32	11	14	8	10	15	4	24	5
検査を		豚	85	8	13	23	13	29	14	39	24
(1	n)	鶏	104	91	98	96	85	106	60	86	81

^{*} AZM、SM、NA、BC 及び SNM についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

^{† 2013} 年度は、と畜場由来の *Enterococcus* spp.の調査を実施していない。

[§] CLSI に規定された BP。

^{-:}調査を実施していない区分。

表 55 と畜場及び食鳥処理場由来の Enterococcus faecium の耐性率の推移 (%)

薬剤*	BP	動物種	2012 年	2014年†	2015 年	2016 年	2017年	2018年	2019 年	2020 年	2021年
		<u>種</u> 牛	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
ABPC	16§	豚	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0
		鶏	2.4	0.0	0.0	0.0	0.0	0.0	0.0	4.5	0.0
		牛	22.7	33.3	0.0	25.0	0.0	-	_	_	-
DSM	128	豚	30.3	58.3	0.0	28.6	27.3	-	-	-	-
		鶏	28.6	13.9	16.1	30.0	18.2	-	-	-	-
		牛	2.3	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0
GM	32	豚	0.0	0.0	0.0	0.0	0.0	50.0	-	0.0	7.7
		鶏	3.6	2.8	3.2	10.0	9.1	0.0	0.0	4.5	0.0
		4	34.1	33.3	16.7	0.0	50.0	-	0.0	16.7	100.0
KM	128	豚	30.3	25.0	72.7	28.6	72.7	100.0	=	57.1	76.9
		鶏	34.5	33.3	35.5	40.0	45.5	90.0	85.7	100.0	87.0
		牛	9.1	0.0	16.7	0.0	0.0	-	-	-	-
OTC	16	豚	42.4	41.7	9.1	42.9	54.5	-	-	-	-
		鶏	63.1	58.3	64.5	60.0	31.8	-	-	-	-
		4	-	-	-	-	-	-	0.0	0.0	0.0
TC	16§	豚	-	-	-	-	-	50.0	-	28.6	46.2
		鶏	-	-	-	-	-	60.0	57.1	72.7	26.1
		#	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0
CP	32§	豚	0.0	25.0	0.0	0.0	9.1	0.0	-	0.0	23.1
		鶏	4.8	8.3	6.5	0.0	9.1	10.0	28.6	4.5	4.3
		4	11.4	0.0	33.3	25.0	0.0	-	0.0	33.3	0.0
EM	8§	豚	15.2	58.3	54.5	57.1	45.5	0.0	-	14.3	46.2
		鶏	32.1	30.6	35.5	20.0	27.3	40.0	28.6	50.0	30.4
		牛	9.1	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0
LCM	128	豚	39.4	50.0	9.1	28.6	27.3	0.0	-	14.3	30.8
		鶏	31.0	19.4	29.0	20.0	27.3	20.0	28.6	40.9	30.4
		牛	36.4	0.0	16.7	25.0	0.0	-	-	-	-
ERFX	4	豚	45.5	25.0	0.0	0.0	27.3	-	-	-	-
		鶏	65.5	13.9	71.0	30.0	18.2	-	-	-	-
		4	-	-	-	-	-	-	0.0	0.0	33.3
CPFX	4 §	豚	-	-	-	-	=	0.0	-	28.6	23.1
		鶏	-	-	-	-	-	20.0	42.9	36.4	34.8
		牛	9.1	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0
TS	64	豚	12.1	16.7	0.0	28.6	18.2	0.0	-	0.0	15.4
		鶏	26.2	19.4	22.6	20.0	27.3	20.0	28.6	18.2	21.7
		牛	-	-	0.0	0.0	0.0	-	0.0	0.0	0.0
VCM	32	豚	-	-	0.0	0.0	0.0	0.0	-	0.0	0.0
		鶏	-	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
検査を	- *****	牛	44	6	6	4	4	0	1	6	3
		豚	84	12	11	7	11	2	0	7	13
(n)		鶏	64	36	31	10	22	10	7	22	23

^{*} AZM、SM、NA、BC 及び SNM についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

^{† 2013} 年度は、と畜場由来の *Enterococcus* spp.の調査を実施していない。 § CLSI に規定された BP。

^{-:}調査を実施していない区分。

v . Salmonella spp.

鶏由来株について 2012 年から 2017 年に 12 薬剤、2018 年以降は更に MEPM を加えた 13 薬剤を対象に調査を行った。2021 年は、TC に対して 70%、KM 及び SM に対し 60%、ST に対して 40%を超える耐性が認められた。一方、CEZ に対する耐性率は 5%未満で、ゲンタマイシン(GM)に対する耐性は認められなかった。ヒトの医療で重要な CTX 及び CPFX に対する耐性率は 3%未満で、CL 及び MEPM に対する耐性率は 0.0%であった。

なお、2015~2021 年度に分離された食鳥処理場由来のサルモネラの血清型は、S. Schwarzengrund、S. Infantis、S. Typhimurium が多かった。サルモネラ血清型について食鳥処理場由来と食品由来及びヒト由来(薬剤耐性ワンヘルス動向調査報告書 2022:表 19 引用)の比較(表 58、図 1)では食鳥処理場由来のサルモネラの血清型は、食品由来のサルモネラと同じ傾向が認められ、食鳥処理場由来で分離された上位 2 血清型は食品と同じであり、全体においてそれぞれ 88.8%及び 75.4%を占め、関連性があることが示唆された。一方、ヒト由来株の血清型は食鳥処理場及び食品由来に比べて多様で、食鳥処理場由来の上位 2 血清型の占める割合は 23.8%であり、ヒト由来のサルモネラは鶏又はその食品を介したもの以外の多様な原因がある可能性が示唆された。また、食鳥処理場由来の大半を占める上位 2 血清型の S. Schwarzengrund、S. Infantis について耐性率を比較した結果(表 59、図 2)(薬剤耐性ワンヘルス動向調査報告書 2022:表 29 引用)S. Infantis 及び S. Schwarzengrund の KM、SM 及び TC の耐性率は食品由来株と食鳥処理場由来で類似性が認められ、S. Schwarzengrund ではヒト由来株の耐性率と類似性が認められるが、ヒト由来 S. Infantis 株の耐性率とは傾向が異なることから、ヒト由来 S. Infantis については食鳥及びその食品以外にも由来している可能性が示唆された。

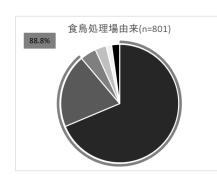
表 56 食鳥処理場由来の Salmonella spp.の耐性率の推移 (%)

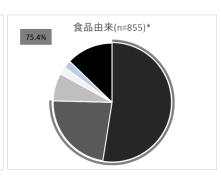
市文川	ВР	動物	2012	2013	2014	2015	2016	2017	2018	2019	2020 /=	2021
薬剤	ВР	種	年	年	年	年	年	年	年	年	2020年	年
ABPC	32*	鶏	31.9	22.9	17.2	13.0	13.5	8.0	6.8	5.6	1.8	11.9
	32(2016											
CEZ	年より	鶏	7.4	5.9	3.1	1.6	7.7	3.6	3.4	3.7	1.8	3.8
	8*)											
CTX	4*	鶏	7.4	5.1	2.3	1.6	1.9	1.8	2.6	1.9	0.9	2.5
MEPM	4*	鶏	-	-	-	-	-	-	0.0	0.0	0.0	0.0
SM	32	鶏	77.7	84.7	85.9	76.4	77.9	60.7	77.8	33.6	48.6	69.9
GM	16*	鶏	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KM	64*	鶏	31.9	42.4	57.8	69.1	72.1	73.2	66.7	75.7	68.8	63.2
TC	16*	鶏	74.5	82.2	85.2	83.7	82.7	77.7	77.8	69.2	73.4	78.3
СР	32*	鶏	0.0	0.8	1.6	1.6	0.0	0.9	1.7	0.9	0.0	0.9
	16(2016											
CL	年より	鶏	0.0	0.0	0.0	0.0	0.0	0.0	0.9	1.9	0.0	0.4
	4*)											
NA	32*	鶏	29.8	19.5	17.2	15.4	12.5	17.0	18.8	8.4	11.9	17.0
CPFX	4(2016年	鶏	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9	0.9	0.4
CFLX	より1*)	炳	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9	0.9	0.4
ST	76/4*	鶏	31.9	48.3	51.6	57.7	56.7	55.4	53.0	52.3	45.9	49.5
	查 株数	鶏	94	118	128	123	104	112	117	107	109	129

BP の単位は μg/mL。 * CLSI に規定された BP。

表 57 鳥処理場由来の Salmonella enterica の血清型(2015-2021)

血清型	分離株数	(%)
Schwarzengrund	550	68.7
Infantis	161	20.1
Typhimurium	35	4.4
Agona	12	1.5
Manhattan	25	3.1
Others	18	2.2
総計	801	100.0


表 58 食鳥処理場、食品及びヒト由来の Salmonella enterica の血清型 (2015-2021)


食鳥処理場由来 (n=801)	%
Schwarzengrund	68.7
Infantis	20.1
Typhimurium	4.4
Manhattan	3.1
Agona	1.5
Others	2.2
Total	100.0

食品由来 (n=855) *	%
Schwarzengrund	52.5
Infantis	22.9
Manhattan	7.6
Heidelberg	2.1
Enteritidis	2.1
Others	12.8
Total	100.0

ヒト由来 (n=2,093) *	%
Enteritidis	12.7
4:i:-	11.1
Infantis	9.4
Thompson	8.0
Saintpaul	6.3
Typhimurium	6.3
Schwarzengrund	5.3
Newport	2.9
Stanley	2.9
Agona	2.3
Others	32.9
Total	100.0

^{*}薬剤耐性ワンヘルス動向調査報告書 2022:表 19 を引用

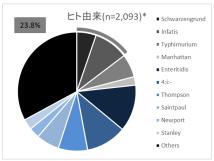


図 1 食鳥処理場由来 Salmonella enterica の上位 2 血清型の食品及びヒト由来における割合 (2015-2021) (ヒト由来と食品由来の割合は、薬剤耐性ワンヘルス動向調査報告書 2022:表 19 を引用)

表 59 食鳥処理場(鶏)、食品及びヒト由来 S. Infantis 及び S. Schwarzengrund の耐性率(2015-2021)

		Infantis		Schwarzengrund				
	鶏	食品	ヒト	鶏	食品	ヒト		
	(n=161)	(n=196) *	(n=196) *	(n=550)	(n=449) *	(n=110) *		
ABPC	8.2	11.7	2.6	2.2	5.1	2.7		
GM	0.0	0.5	0.0	0.0	0.0	0.0		
KM	41.8	39.3	13.3	84.0	79.5	63.6		
SM	73.3	73.0	30.1	67.3	78.8	68.2		
TC	78.8	77.6	36.7	81.3	86.6	68.2		
CP	0.7	2.6	2.0	1.1	7.8	1.8		
CTX	6.5	6.1	1.5	0.6	0.7	1.8		
NA	6.2	6.6	6.6	11.1	20.5	12.7		
CPFX	0.0	0.0	0.0	0.8	0.2	0.0		

^{*}薬剤耐性ワンヘルス動向調査報告書 2022:表 29 を引用

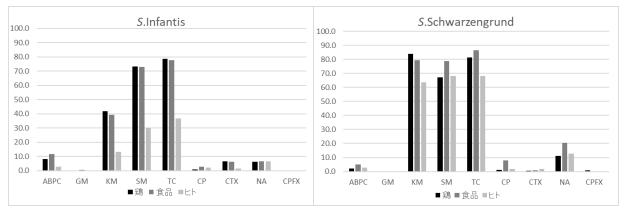


図 2 ヒト、食品及び食鳥処理場由来 S. Infantis 及び S. Scwarzengrund の耐性率(2015-

2021) (ヒト由来と食品由来の耐性率は薬剤耐性ワンヘルス動向調査報告書 2022:表 29 を引用)

② 養殖水産分野

データ元:動物由来薬剤耐性菌モニタリング(JVARM)

JVARM では海産養殖水産分野における薬剤耐性に関する監視・動向調査として、病魚由来のレンサ球菌症原因菌、類結節症原因菌 (Photobacterium damselae subsp. piscicida) 及びビブリオ病原因菌 (Vibrio spp.)、並びに水産養殖環境由来の腸炎ビブリオ (Vibrio parahaemolyticus)の薬剤感受性の調査を実施している。供試株は、都道府県の水産試験場で病性鑑定のために分離・同定した株等を用いており、2011 年から 2016 年においては毎年 4~6 県、2017 年においては8 県、2018 年には 12 県、2019 年から 2021 年において毎年 11 県から菌株の提供があった。

また、海産養殖水産分野における薬剤耐性の動向調査をさらに充実させるために、2017 年度からは、対象を全ての養殖魚類に拡大し、レンサ球菌症原因菌及びビブリオ病原因菌における薬剤感受性の調査を実施している。

薬剤感受性試験には、CLSI のガイドラインに準拠した寒天平板希釈法又は微量液体希釈法を用いて MIC を測定した。BP は、CLSI で規定されている薬剤についてはその値を採用し、CLSI で規定されていない薬剤については、微生物学的 BP(二峰性を示す MIC 分布の中間点)を採用した。

病魚由来細菌

i. 病魚由来レンサ球菌症原因菌 Lactococcus garvieae

2011年から2021年まで、レンサ球菌症に対する水産用医薬品として承認されている4薬剤の調査を行った。2021年は、LCMに対する耐性率は66.2%であった。2021年のEMに対する耐性率は14.5%と、耐性率は低値で維持されていたものの、上昇傾向にあった。OTCに対する耐性率は1.0%と、低値で維持されていた。フロルフェニコール(FF)については二峰性のMIC分布を示さず、BPを設定できなかったため、耐性率を求めることができなかったが、全ての菌株で低いMIC(\leq 4 μg/mL)であった(表 60)。

表 60 レンサ球菌症原因菌 Lactococcus garvieae の耐性率の推移 (%)

	BP	BP							2017年				
薬剤*1	(~	(2020	2011年	2012年	2013年	2014年	2015年	2016年	*2*3	2018年	2019年	2020年	2021年
	2019)	~)											
EM	8	16	0.0	10.3	0.0	0.0	2.2	1.7	1.9	0.0	3.1	0.6	14.5
LCM	8	16	92.6	76.9	68.2	40.0	53.3	58.3	61.0	31.5	54.6	53.8	66.2
OTC	8	16	0.0	12.8	0.0	0.0	2.2	1.7	0.0	0.0	2.6	0.6	1.0
検	査株数	(n)	27	39	22	25	45	60	105	149	194	158	207

^{*1:}FF についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

^{*2:2016}年までぶり類由来株のみを対象にしていたが、2017年からは海産養殖魚由来株を対象としている。

^{*3:2016}年まで寒天平板希釈法で調査を実施していたが、2017年からは微量液体希釈法で調査を実施している。

ii. 病魚(ぶり類)由来類結節症病因菌 Photobacterium damselae subsp. piscicida

2011~2016年に類結節症に対する水産用医薬品として承認されている5薬剤の調査を行った。供試株数が少なく、特に2015年は供試菌株が3株であり、2016年は供試菌株が分離されなかった。2011年から2014年の供試菌株については、ABPC及びオキソリン酸(OA)では各年度で耐性率の上下動が認められたものの、ビコザマイシン(BCM)及びホスホマイシン(FOM)に対しては、いずれも7.1%以下の耐性率が維持されていた。また、FFに対しては、二峰性のMIC分布を示さず、耐性率を求めることが出来なかったが、全ての株で低いMIC(MIC \leq 1 μ g/mL)が認められたため、感受性は維持されていると考えられた。2015年の供試菌株は、いずれの薬剤に対しても低いMICを示した(表61)。

表 61 類結節症原因菌 *Photobacterium damselae* subsp. *piscicida* の耐性率の推移(%)

薬剤*	ВР	2011 年	2012 年	2013 年	2014 年
ABPC	2	11.8	17.6	7.1	59.4
FOM	32	0.0	0.0	7.1	0.0
BCM	64	0.0	0.0	0.0	0.0
OA	1	100.0	82.4	92.9	3.1
検査株数(n)		17	17	14	32

BP の単位は µg/mL。

iii. ビブリオ病原因菌 Vibrio spp.

2017 年から病魚由来株についてビブリオ病に対する水産用医薬品として承認されている 4 薬剤の調査を行っている。2021 年は、OTC に対する耐性率は 4.2%だった。FF では、MIC 分布が二峰性を示さず、全ての菌株で低い MIC (\leq 4 μ g/mL) であり、OA では、MIC 分布が二峰性を示さず、全ての菌株で低い MIC (\leq 0.5 μ g/mL) を示したことから、感受性が維持されていると考えられた。一方、スルファモノメトキシン(SMMX)については、MIC 分布において明確な二峰性を示さず、耐性率を求めることができなかった(表 62)。

表 62 ビブリオ病原因菌 Vibrio spp.の耐性率の推移 (%)

薬剤*	BP (∼2019)	BP (2020∼)	2017年	2018年	2019年	2020年	2021 年
OTC	8 16		12.8	15.7	0.0	11.9	4.2
	検査株数(n))	39	51	40	42	71

BP の単位は µg/mL。

iv. 水産養殖環境由来腸炎ビブリオ *Vibrio parahaemolyticus*

2011~2012 年の水産養殖環境由来株(それぞれ 53 株及び 50 株)について、水産用医薬品として 承認されている 5 薬剤 (EM、LCM、OTC、OA 及び FF) の対象に調査を行った。

全ての薬剤で二峰性の MIC 分布を示さず、耐性率を求めることが出来なかったものの、リンコマイシン(LCM: 32≦MIC≦256 µg/mL)以外は、全ての株で低い MIC が認められたため(EM:

^{*}FF についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

²⁰¹⁵年の供試菌株は3株であったため、表中に示していない。

²⁰¹⁶年は供試菌株が分離されなかった。

^{*}FF、OA、SMMX についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

 $MIC \le 2 \ \mu g/mL$ 、OTC 及び FF: $MIC \le 1 \ \mu g/mL$ 、OA: $MIC \le 0.5 \ \mu g/mL$) これらの薬剤に対しては感受性と考えられた。

健康魚由来細菌

健康魚由来細菌 (Lactococcus garvieae 及び Vibrio spp.) について、2021 年から試行的に調査を開始した。採材養殖場数は 10 施設であり、各養殖場あたり 10 尾から採材した。

i.健康養殖ぶり由来レンサ球菌症原因菌 Lactococcus garvieae

2021 年に水揚げされた健康養殖ぶり由来株について調査を行ったが、本菌は病原菌であり、海水中での生活環は不明だが、本年度の調査の結果から、10 施設のうちの 6 施設では菌が分離されなかった。適当なグラム陽性菌の指標菌が存在しないことから *L. garvieae* を採材したが、採材方法、菌種の選択あるいは分離方法も含め、今後更なる検討が必要であると考えられた。

ii.健康養殖ぶり由来ビブリオ属菌 Vibrio spp.

2021 年に水揚げされた健康な養殖ぶり由来株について、ビブリオ病に対する水産用医薬品として承認されている4薬剤の調査を行った。

BP は 2020 年の病魚由来の調査で設定した値を採用した(表 62)。ビブリオ属細菌は魚等に対して病原性を保有する菌種の他、非病原性で海水中に常在する菌種も存在することから、本属細菌はすべての養殖場から分離された。分離された 169 株のうち、OTC に耐性を示す株は 10.7%であった。FF 及び OA では、MIC 分布が二峰性を示さなかったため、BP を定めることができなかったが、全ての菌株で低い MIC であった(FF で $\leq 8~\mu g/m L$ 、OA で $\leq 2~\mu g/m L$)。一方、スルファモノメトキシン(SMMX)についても、MIC 分布において明確な二峰性を示さず、BP を定めることができなかった。

③ 愛玩動物

データ元:動物由来薬剤耐性菌モニタリング(JVARM)

AMR アクションプランのモニタリング強化の一環として、2017 年度に疾病にり患した犬及び猫由来の薬剤耐性モニタリングを開始したが、健康動物由来とは異なり、疾病にり患した動物由来細菌の薬剤耐性の調査では、抗菌剤による治療の影響や疾病の発生状況の影響を受ける可能性があることから、愛玩動物についても家畜と同様に健康動物の薬剤耐性の動向をベースラインの情報として把握することが重要と考えられる。そのため、疾病にり患した動物の調査を継続するとともに、健康な犬猫を対象とした調査を 2018 年より開始した。

薬剤感受性試験には、CLSI に準拠した微量液体希釈法を用い、収集した各種菌株の抗菌剤の MIC を測定した。なお、BP は、CLSI で規定されている薬剤についてはその値を採用し、CLSI で規定されていない薬剤については、EUCAST で規定されている値又は微生物学的 BP (二峰性を示す MIC 分布の中間点)を採用した。

疾病にり患した犬及び猫由来細菌

疾病にり患した犬猫からの菌株の収集にあたっては、全国を北海道・東北、関東、中部、近畿、中国・四国、九州・沖縄の6つのブロックに分け、動物診療施設(小動物・その他)の開設届出数に基づいて菌株数を割り当て、小動物の臨床検査機関より収集した。

検体は *Escherichia coli* 及び *Klebsiella* spp.は尿及び生殖器、コアグラーゼ陽性 *Staphylococcus* spp.は尿及び皮膚、*Enterococcus* spp.は尿及び耳から採材されたものとした。

i . Escherichia coli

2022 年も、これまでと同様に調査薬剤の中で ABPC 及び NA に対する耐性率が $47.9\sim55.1\%$ と高かった。一方、GM、KM 及び CP 並びに猫由来株の SM 及び ST に対する耐性率は 20%未満であった。ヒトの医療で重要な抗菌剤については、犬及び猫由来株でそれぞれ CTX に対しては 25.9%及び 24.3%、CPFX に対しては 37.3%及び 29.6%の耐性率であり、CL 及び MEPM に対する耐性率はいずれも 0.0%であった。

表 63 疾病にり患した犬及び猫由来の Escherichia coli の耐性率の推移 (%)

薬剤	ВР	動物種	2017年	2018年	2019 年	2020年	2021 年	2022 年
ADDC	20*	犬	55.3	63.0	51.1	50.3	54.4	53.5
ABPC	32*	猫	64.0	65.6	60.2	56.5	59.4	47.9
057	20*	犬	31.2	47.4	30.3	31.1	32.8	30.3
CEZ	32*	猫	37.5	49.5	32.0	29.8	33.5	32.0
CEV	32 [†]	犬	31.7	42.9	31.5	32.8	32.8	32.4
CEX	32 '	猫	41.9	47.3	31.3	31.7	37.1	32.5
CTX	4*	犬	26.1	41.6	26.4	27.1	27.8	25.9
CIX	4.	猫	33.8	39.8	26.6	26.1	29.4	24.3
MEPM	4*	犬	0.0	0.0	0.0	0.0	0.0	0.0
IVIEPIVI	4."	猫	0.0	0.0	0.0	0.0	0.0	0.0
CM	20 †	犬	29.6	29.9	20.2	27.1	25.6	20.5
SM	32 [†]	猫	32.4	34.4	28.9	19.3	23.5	17.8
GM	16*	犬	14.1	18.8	12.9	13.0	12.2	11.9
GIVI	10	猫	12.5	15.1	9.4	9.9	17.1	10.7
IZ N A	C.1*	犬	6.5	7.8	5.1	5.6	5.6	7.6
KM	64*	猫	8.1	12.9	7.0	3.7	6.5	4.1
TO	1.0*	犬	28.1	27.3	21.3	23.2	20.6	20.0
TC	16*	猫	24.3	28.0	26.6	16.8	24.1	23.1
CD	32*	犬	12.6	16.9	11.8	7.9	12.8	5.4
CP	32	猫	13.2	15.1	7.8	5.0	8.2	8.3
CL	4*	犬	1.0	0.0	0.0	0.0	0.0	0.0
CL	4	猫	0.0	1.1	0.0	0.6	0.6	0.0
NA	32*	犬	61.8	72.7	56.2	58.8	56.1	55.1
IVA	32	猫	58.8	68.8	46.9	55.9	54.7	53.3
	4*(2018	犬	43.2	55.2	38.8	42.4	40.6	37.3
CPFX	年より 1)	猫	39.0	50.5	37.5	38.5	41.2	29.6
ST	76/4*	犬	24.6	27.9	17.4	19.2	18.3	24.3
SI	10/4	猫	22.1	34.4	22.7	14.3	21.8	16.0
1 △★↓	+ *h (~)	犬	199	154	178	177	180	185
使 食	朱数(n)	猫	136	93	128	161	170	169
DDの単位	/	* 01 01 /= 1	日中ナムた DD	† ELICACT I=+				

BP の単位は μg/mL。 * CLSI に規定された BP。 † EUCAST に規定された BP。

ii . Klebsiella spp.

Klebsiella spp.では K. pneumoniae が最も多く、他に K. oxytoca が収集された。2022 年は、犬猫 由来株の NA 及び CPFX、猫由来株の CEZ、セファレキシン(CEX)、CTX、SM、GM、TC 及び ST に対して 40%を超える耐性率が認められた。一方、犬及び猫由来株の KM に対する耐性率は 20%未満であった。ヒトの医療で重要な抗菌剤については、犬及び猫由来株でそれぞれ CTX に対しては 33.7%、60.9%、CPFX に対しては 42.7%、68.1%、CL に対しては 0.0%、2.9%の耐性率であり、MEPM に対する耐性率はいずれも 0.0%であった。

表 64 疾病にり患した犬及び猫由来の Klebsiella spp.の耐性率の推移 (%)

	·				• •			
薬剤	ВР	動物種	2017年	2018年	2019 年	2020 年	2021年	2022 年
CEZ	32*	犬	47.2	51.0	42.0	45.8	44.0	37.1
CLZ	32	猫	84.6	90.0	67.6	61.3	69.3	63.8
CEX	32 [†]	犬	44.4	46.9	42.0	45.8	44.0	33.7
CLX	32	猫	84.6	80.0	62.2	58.1	64.0	63.8
СТХ	4*	犬	41.7	36.7	34.6	34.9	37.4	33.7
CIX	4	猫	80.8	75.0	56.8	48.4	56.0	60.9
MEPM	4*	犬	0.0	0.0	0.0	0.0	0.0	0.0
IVILFIVI	4	猫	0.0	0.0	0.0	0.0	0.0	0.0
CNA	32 [†]	犬	26.4	34.7	29.6	31.3	30.8	32.6
SM	32	猫	57.7	55.0	59.5	41.9	52.0	46.4
GM 16*	16*	犬	26.4	28.6	21.0	28.9	24.2	30.3
	10	猫	61.5	55.0	40.5	33.9	44.0	49.3
KM	64*	犬	8.3	12.2	6.2	10.8	9.9	9.0
	04	猫	23.1	20.0	13.5	12.9	9.3	18.8
TC	16*	犬	33.3	42.9	30.9	33.7	26.4	29.2
10	10	猫	57.7	65.0	48.6	40.3	56.0	50.7
СР	32*	犬	25.0	32.7	19.8	25.3	20.9	21.3
CP	32	猫	26.9	45.0	16.2	25.8	26.7	27.5
CL	4*	犬	1.4	0.0	0.0	0.0	0.0	0.0
CL	4	猫	3.8	0.0	0.0	1.6	4.0	2.9
NA	32*	犬	51.4	61.2	46.9	48.2	54.9	46.1
IVA	32	猫	84.6	95.0	81.1	54.8	77.3	75.4
CPFX	4*(2018年	犬	44.4	57.1	46.9	44.6	49.5	42.7
	より1)	猫	84.6	90.0	75.7	56.5	73.3	68.1
ST	76/4*	犬	41.7	46.9	37.0	39.8	38.5	34.8
J1	10/4	猫	76.9	70.0	56.8	43.5	54.7	56.5
検査株数(n)	犬	72	49	81	83	91	89	
	猫	26	20	37	62	75	69	

BP の単位は µg/mL。

^{*} CLSI に規定された BP。

[†]CEX は EUCAST の値を用いた。SM は EUCAST でも設定されていないことから JVARM の値(平成 13 年度に得られた二峰性を示す MIC 分布の中間点)を用いた。ABPC も調査対象としているが *K. pneumoniae、K. oxytoca* とも自然耐性のため記載していない。

iii. コアグラーゼ陽性 Staphylococcus spp.

コアグラーゼ陽性 *Staphylococcus* spp.は、犬猫共に *S. pseudintermedius* が最も多く、その他に *S. aureus* が収集された。

S. pseudintermedius については、2017年の調査開始以降、犬及び猫由来株は GM 及び CP を除くすべての薬剤に対して 50%を超える耐性を示し、2022年は、犬由来株の GM の耐性率を除き、50%を超える耐性率を示した。ヒトの医療で重要な抗菌剤である AZM 及び CPFX については、犬及び猫由来株とも 70%以上の耐性が認められた。

猫由来 *S. aureus* については、2022 年においてベンジルペニシリン(PCG)、MPIPC、CEX、CFX、EM、AZM 及び CPFX に対して 50%を超える耐性が認められた。一方で、SM に対する耐性率は 4.8% と低かった。ヒトの医療で重要な抗菌剤 CTX、AZM 及び CPFX については 40%以上の耐性率が認められた。

表 65 疾病にり患した犬及び猫由来の Staphylococcus pseudintermedius の耐性率の推移 (%)

薬剤*	ВР	動物 種	2017年	2018年	2019 年	2020年	2021年	2022 年
PCG	0.25	犬	_	_	97.4	95.9	97.4	98.9
rca	†	猫	_	_	97.6	98.0	98.4	95.7
MPIPC	0.5 [†]	犬	58.2	56.6	62.8	51.4	56.6	60.2
IVIFIFC	0.5	猫	68.6	81.8	81.0	77.6	78.7	76.1
GM	16†	犬	26.2	54.2	64.1	25.7	40.8	44.3
GIVI	10	猫	13.7	63.6	52.4	44.9	50.8	63.0
TC	16†	犬	62.3	67.5	66.7	73.0	71.1	65.9
10	10	猫	52.9	81.8	85.7	71.4	85.2	73.9
СР	32 [†]	犬	43.4	49.4	60.3	58.1	55.3	59.1
CP	32	猫	64.7	72.7	83.3	67.3	82.0	65.2
EM	8 [†]	犬	67.2	74.7	79.5	77.0	71.1	77.3
□IVI	0	猫	70.6	86.4	95.2	79.6	91.8	89.1
AZM	8†	犬	67.2	74.7	79.5	77.0	71.1	77.3
AZIVI	0	猫	66.7	86.4	95.2	79.6	91.8	91.3
CPFX	4 [†]	犬	64.8	75.9	75.6	74.3	73.7	79.5
CFFA	4 '	猫	88.2	100.0	97.6	93.9	91.8	97.8
	t (n)	犬	122	83	78	74	76	88
検査株数	X (II)	猫	51	22	42	49	61	46

BP の単位は µg/mL。

[†]CLSI に規定された BP。ABPC、CEZ、CEX、CFX、CMZ、CTX 及び SM についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

表 66 疾病にり患した猫由来の Staphylococcus aureus の耐性率の推移 (%)

薬剤	ВР	動物種	2017年	2018年	2019 年	2020 年	2021年	2022 年
PCG	0.25	猫	_	_	90.0	84.6	96.3	81.0
MPIPC	4 [†]	猫	61.9	70.6	70.0	65.4	51.9	50.0
CEZ	4\$	猫	61.9	64.7	66.7	57.7	44.4	47.6
CEX	16\$	猫	61.9	70.6	70.0	61.5	59.3	52.4
CFX	8\$	猫	61.9	64.7	70.0	61.5	51.9	50.0
CTX	8\$	猫	61.9	64.7	70.0	61.5	55.6	47.6
SM	32\$	猫	4.8	5.9	0.0	3.8	3.7	4.8
GM	16†	猫	47.6	58.8	36.7	57.7	22.2	31.0
TC	16†	猫	14.3	41.2	43.3	38.5	14.8	21.4
СР	32 [†]	猫	0.0	0.0	0.0	0.0	3.7	0.0
EM	8 [†]	猫	66.7	76.5	70.0	61.5	70.4	52.4
AZM	8 [†]	猫	66.7	76.5	70.0	61.5	70.4	52.4
CPFX	4 [†]	猫	61.9	76.5	83.3	73.1	63.0	59.5
検査株数(r	1)	猫	21	17	30	26	27	42

BP の単位は µg/mL。

[†]CLSI に規定された BP。

^{\$} EUCAST の ECOFF 値を採用。

^{*} ABPC 及び CMZ についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

iv. Enterococcus spp.

Enterococcus spp.では犬猫ともに E. faecalis が最も多く、次いで E. faecium が多く収集された。 2022 年は犬及び猫由来株では TC の耐性率が最も高く(犬 65.9%、猫 66.9%)、次いで EM (犬 43.4%、猫 38.0%)であり、犬由来株の ABPC 並びに犬及び猫由来株の CP に対する耐性率は 20%未満であった。ヒトの医療で重要な抗菌剤 CPFX については、犬及び猫由来株で 34.1%及び 40.5%の耐性が認められた。 2019 年から供試薬剤として VCM の測定を開始したが、犬及び猫由来株ともに耐性株は 0.0%であった。

表 67 疾病にり患した犬及び猫由来の Enterococcus spp.の耐性率の推移 (%)

薬剤*	ВР	動物種	2017年	2018年	2019年	2020年	2021年	2022 年
ABPC	16†	犬	26.7	20.5	20.0	14.6	13.3	14.8
		猫	17.3	31.6	33.0	26.4	24.1	24.5
GM	32 §	犬	16.8	15.4	25.2	25.7	27.8	33.0
		猫	14.3	24.6	25.2	25.7	27.1	20.9
TC	16†	犬	65.6	67.9	68.9	64.9	63.9	65.9
		猫	70.4	73.7	64.1	68.2	65.9	66.9
СР	32 †	犬	20.6	14.1	18.5	14.6	13.3	14.8
		猫	20.4	15.8	8.7	18.2	15.3	12.3
EM	8†	犬	61.8	39.7	43.0	45.0	46.1	43.4
		猫	41.8	54.4	39.8	48.0	45.9	38.0
CPFX	4†	犬	42.7	28.2	31.1	25.1	27.8	34.1
		猫	34.7	49.1	43.7	40.5	40.6	40.5
VCM	32 †	犬	-	-	0.0	0.0	0.0	0.0
		猫		_	0.0	0.0	0.0	0.0
検査株数(n)		犬	131	78	135	171	180	182
		猫	98	57	103	148	170	163

BP の単位は µg/mL。

健康な犬及び猫由来細菌

健康な犬猫からの菌株の収集にあたっては、都道府県別の動物診療施設(小動物・その他)の開設 届出数に基づいて菌株数を割り当て、公益社団法人日本獣医師会の協力を得て、全国の動物病院から 収集した。動物病院に健康診断やワクチン接種のために訪れた健康な犬及び猫から直腸スワブ検体を 採取し、大腸菌及び *Enterococcus* spp.を分離、同定し、薬剤感受性試験に供した。

^{*}AZM についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

[†]CLSI に規定された BP。

 $^{^{\}S}$ GM は EUCAST でも設定されていないことから JVARM の値(平成 14 年度に得られた二峰性を示す MIC 分布の中間点)を用いた。

i . Escherichia coli

2022 年の健康な犬及び猫由来株では、これまでの調査と同様に、調査薬剤のうち ABPC 及び NA に対する耐性率が他の薬剤に対する耐性率に比べて高い傾向を示し、その他の薬剤(表 68 参照)に対する耐性率はいずれも 20%未満であった。ヒトの医療で重要な抗菌剤については、犬及び猫由来株で、CTX に対しては 8.8%及び 7.7%、CPFX に対しては 10.5%及び 7.1%、CL に対しては 0.0%及び 0.6%の耐性率であり、MEPM に対する耐性率はいずれも 0.0%であった。耐性株が存在した各薬剤について同年に収集された疾病にり患した犬猫由来の大腸菌の耐性率と比較すると全ての薬剤で健康な犬猫由来株の方が低い耐性率を示した。

表 68 健康な犬及び猫由来の Escherichia coli の耐性率の推移 (%)

K OO I	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. о дел	-5 2001101101	iid COII 47间)上	T-93E12 (70)		
薬剤	BP	動物種	2018年	2019年	2020年	2021 年	2022 年
ADDC	20*	犬	33.8	23.3	29.5	17.5	28.1
ABPC	32*	猫	28.5	27.1	18.5	21.7	25.4
CE7	32*	犬	17.2	11.4	17.8	10.4	14.6
CEZ	32"	猫	17.1	13.3	7.5	9.9	13.6
CEV	32 [†]	犬	17.9	11.4	17.1	9.7	14.0
CEX	32 '	猫	18.4	13.3	8.9	10.6	14.8
CTV	4*	犬	13.2	8.8	13.0	7.8	8.8
CTX	4.	猫	10.8	6.4	2.7	7.5	7.1
MEDM	4*	犬	0.0	0.0	0.0	0.0	0.0
MEPM	4"	猫	0.0	0.0	0.0	0.0	0.0
CNA	20 †	犬	19.2	13.0	14.4	8.4	13.5
SM	32 [†]	猫	11.4	11.7	8.9	11.2	7.7
GM	1.0*	犬	3.3	2.6	8.2	1.9	3.5
	16*	猫	2.5	4.3	3.4	4.3	2.4
IZ N A	C 1*	犬	5.3	3.6	4.1	2.6	2.9
KM	64*	猫	1.9	3.2	3.4	3.1	2.4
Τ.Ο.	1.0*	犬	16.6	13.0	12.3	8.4	11.1
TC	16*	猫	10.8	10.1	8.2	8.1	3.6
CD	20*	犬	4.6	5.7	5.5	3.2	4.7
CP	32*	猫	1.3	3.7	1.4	2.5	1.2
01	4*	犬	0.0	0.0	0.0	0.0	0.0
CL	4"	猫	0.0	0.0	0.0	0.0	0.6
NIA	32*	犬	27.8	20.7	22.6	10.4	19.3
NA	32"	猫	24.7	28.7	17.8	17.4	20.1
CDEV	1*	犬	18.5	8.8	12.3	7.1	10.5
CPFX	1.	猫	12.0	13.3	4.8	7.5	7.1
CT.	76 / 1*	犬	13.2	7.8	11.6	5.8	11.1
ST	76/4*	猫	12.0	9.6	5.5	7.5	6.5
*	*** ()	犬	151	193	146	154	171
検査株	:釵(n <i>)</i>	猫	158	188	146	161	169

BP の単位は μg/mL。

^{*}CLSI に規定された BP。

[†] EUCAST に規定された BP。

ii . Enterococcus spp.

Enterococcus spp.では犬猫ともに E. faecalis が最も多かった。その他に E. faecium、E. gallinarum、E. durans、E. hirae、E. avium 及び E. casseliflavus が収集された。2022 年に収集された犬及び猫由来株ではこれまでと同様 TC の耐性率が最も高く、次いで EM で、その他の薬剤に対する耐性率は全て 20%未満であった。ヒトの医療で重要な抗菌剤 CPFX の耐性率は、犬及び猫由来株で 15.8 及び 8.6%であり、VCM に対する耐性率はいずれも 0.0%であった。

表 69 健康な犬及び猫由来の Enterococcus spp.の耐性率 (%)

薬剤*	BP	動物種	2018年	2019 年	2020年	2021年	2022 年
ABPC	16 [†]	犬	6.9	1.9	5.4	0.0	2.9
ABFC	10	猫	2.2	3.4	1.3	1.2	3.4
GM	32§	犬	12.4	7.0	14.0	10.2	9.9
GIVI	32 -	猫	11.1	15.7	22.1	11.9	6.9
TC	16 [†]	犬	55.9	41.8	43.4	47.7	45.6
10	10	猫	48.9	61.8	44.2	58.3	47.4
CP	32 [†]	犬	15.9	10.1	10.1	11.7	11.1
CP	32 '	猫	11.1	14.6	14.3	15.5	6.0
EM	8 [†]	犬	32.4	23.4	27.9	23.4	28.1
LIVI	0	猫	34.4	34.8	32.5	38.1	29.3
CPFX	4 [†]	犬	13.8	5.7	10.1	5.5	15.8
	4	猫	14.4	13.5	10.4	4.8	8.6
VCM	32 [†]	犬	0.0	0.0	0.0	0.0	0.0
V CIVI	32	猫	0.0	0.0	0.0	0.0	0.0
検査株数	ht (n)	犬	145	158	129	128	171
火且休多	х (п)	猫	90	89	77	84	116

BP の単位は µg/mL。

^{*}AZM についても調査対象としているが、BP が設定できないため、耐性率は掲載していない。

[†]CLSI に規定された BP。

 $^{^{\}S}$ GM は EUCAST でも設定されていないことから JVARM の値(平成 14 年度に得られた二峰性を示す MIC 分布の中間点)を用いた。

4 野生動物

2013~2017 年に国内で野生動物 475 個体から分離した大腸菌 963 株(シカ 242 個体 525 株、イノシシ 112 個体 224 株、小型哺乳類(ドブネズミ、クマネズミ、アカネズミ、ヒミズなど)113 個体 199 株、アナグマ 4 個体 10 株、野生ウシ(トカラ牛)2 個体 3 株、アマミノクロウサギ 2 個体 2 株)の薬剤感受性試験を実施した(表 70)。シカとイノシシ由来株で 8 薬剤、小型哺乳類で 10 薬剤に耐性を示した。シカ由来株では耐性菌が 5.9%に認められ、テトラサイクリン(TC、4.4%)耐性が最も高く、コリスチン(1.5%)、ABPC、スルファメトキサゾール・トリメトプリム(ST、0.8%)の順であった。イノシシ由来株では 8.0%に耐性が認められ、TC(4.0%)、ABPC(3.6%)、CP(1.8%)の順であった。小型哺乳類由来株では 18.1%が耐性株で、ABPC と TC(共に 12.6%)で最も多く、ST(11.6%)耐性が続いた。特に、小型哺乳類では、家畜関連施設由来株で 10 薬剤に対する耐性が認められ、ABPC、ST、TC 及び NA 耐性が 10%以上に認められたが、都市部由来株では、2 薬剤(TC と ST)に対する耐性のみで、山間部由来株では調べた 12 薬剤に対する耐性は認められなかった。また基質特異性拡張型 β -ラクタマーゼ(ESBL)産生菌は小型哺乳類(家畜関連施設)由来 1 株で認められ、CTX-M-1 であった。

陸生の野性動物における耐性菌の分布は、生息環境の薬剤耐性菌汚染の影響をうけるが、家畜や伴侶動物に比べると低率である。2016 年から 2019 年に野生シカから分離した大腸菌 848 株においても、調査薬剤に違いはあるが薬剤耐性菌の割合は低率(9 株、1.1%)であることが報告された(表71)。このように、シカやイノシシが主に生息する山間部の薬剤耐性菌の汚染は低度と考えられた。また、2017 年から 2020 年に離島(奄美大島)に生息するアマミノクロウサギ由来大腸菌 135 株は調査薬剤に感受性を示した。草や樹木を主食とするアマミノクロウサギはヒトや家畜、さらに他の野生動物から耐性菌を受け取る機会が少ないのか、今後の調査が期待される。

2018 年から 2019 年に群馬・岐阜・滋賀・大分の 4 県で捕獲されたカワウから分離した大腸菌 144 株では、5.6%が耐性株で、ABPC(3.5%)、TC(2.8%)、NA(1.4%)、CPFX(0.7%)、CL(0.7%)、CP(1.4%)、ST(1.4%)耐性が認められた(表 71)。また、2019 年に宮島沼(北海道)で収集したマガンの糞便由来大腸菌 110 株では、1 株(0.9%)が耐性株(ABPC-CEZ 耐性)で、プラスミド性の AmpC β -ラクタマーゼ産生遺伝子(bla_{ACC})を保有していた(表 71)。カワウが留鳥でマガンが渡り鳥であることが耐性菌の分布に影響することを考慮しなければならないが、野生の水鳥からフルオロキノロン耐性株や伝達性 β -ラクタマーゼ産生株が分離されたことから野生水鳥を介した耐性菌の拡散や水環境の汚染には注意しなければならない。

2018~2021 年に国内で野生動物 366 個体中 274 個体 (75%) の糞便から分離した大腸菌 750 株 (シカ 243 個体中 189 個体 517 株、ヌートリア 43 個体中 12 個体 33 株、ハクビシン 22 個体中 22 個体 61 株、イノシシ 18 個体中 18 個体 54 株、タヌキ 8 個体中 8 個体 24 株、アナグマ 5 個体中 5 個体 9 株、イタチ 4 個体中 4 個体 11 株、キツネ 4 個体中 4 個体 11 株、ヒメネズミ 4 個体中 4 個体 7 株、ニホンザル 3 個体中 3 個体 9 株、アライグマ 2 個体 1 個体 2 株、ノネコ 2 個体中 2 個体 6 株、クマ 1 個体中 1 個体 3 株、テン 1 個体中 1 個体 3 株の薬剤感受性試験を実施した。

薬剤耐性は、シカ(5.4%、28/517)、ハクビシン(1.6%、1/61)、イノシシ(7.4%、4/54)、アナグマ(11%、1/9)、キツネ(9.1%、1/11)、ニホンザル(11.1%、1/9)、アライグマ(50.0%、1/2)に認められた。キツネ由来株で5薬剤、シカ由来株で4薬剤、ハクビシン、イノシシ、ニホンザル及びアライグマ由来株で1薬剤に耐性を示した(表 72)。全体ではテトラサイクリン(TC、5.4%)耐性が最も高く、その他6薬剤に対する耐性が認められた。キツネで認められた CPFX 耐性菌は、ABPC、TC、CP に耐性を示す多剤耐性菌であった。

抗菌薬含有 DHL 寒天培地を用いて、CTX 耐性大腸菌およびキノロン耐性大腸菌を分離した(表73)。セファロスポリン(CEZ、セファレキシンまたは CTX)含有培地で分離された CTX 耐性大腸菌は、366 検体中 5 個体(1.4%、14 株)から分離された。分離された動物はシカ 243 個体中 2 個体(0.8%、6 株)、アナグマ 6 個体中 1 個体(16.7%、2 株)、キツネ 4 個体中 1 個体(25%、3 株)およびアライグマ 2 個体中 1 個体(50%、2 株)であった。キツネ由来 1 株が AmpC β ラクタマーゼ産生株(CMY-2)であったが、その他は ESBL 産生株(CTX-M-27、CTX-M-55、CTX-M-1)であった。NA 含有培地ではキノロン耐性大腸菌が、366 検体中 17 検体(4.6%)から 35 株分離され、分離された動物はシカ(10 頭、4.1%)、ハクビシン(1 頭、13.6%)、タヌキ(1 頭、12.5%)、キツネ(2 頭、50%)およびアライグマ(1 頭、50%)であった。キノロン耐性株は DNA ジャイレースまたはトポイソメラーゼ IV のキノロン耐性決定領域(QRDR)に変異が認められ、一部の株(シカ 1 頭、キツネ 2 頭)がプラスミド性キノロン耐性遺伝子(gnrB19)を保有していた。

近年、都市部に生息する野生動物を対象にした抗菌剤含有分離培地を用いた調査が報告された(表 73)。2016~2017 年に神奈川県内で捕獲されたタヌキ 80 頭中 20 頭から CTX 含有培地で CTX 耐性菌 が 20 株分離された(25%)。産生する β-ラクタマーゼの内訳は 18 株が CMY-2(n = 7)、CTX-M-14 (n=5) 、CTX-M-2 (n=2) 、CTX-M-1 (n=1) 、CTX-M-55 (n=1) 、DHA-1 (n=1) を、1 株が CMY-2 と CTX-M-14 を保有したが、1 株は不明であった。2018 年に奈良公園を中心とした市街 地でシカの排泄便を収集して、NA 含有培地を用いてキノロン耐性大腸菌を分離した。59 個体中 41 個体(69.5%)から NA 耐性大腸菌が分離され、その内 22 個体から分離した NA 耐性大腸菌がフルオ ロキノロンにも耐性を示した。この地域では遺伝子型が類似した薬剤耐性菌が複数のシカで観察され、 シカ-シカ間の伝播(種内伝播)によって高率に耐性菌が分布することが示唆されている。また、 2019~2020 年に奈良公園を中心とした市街地、2018~2021 年に市街地周辺の里山、2019 年に県内 山間部で収集したシカ糞便からセファレキシン含有培地と NA 含有培地を用いて耐性大腸菌を分離し た。CTX 耐性大腸菌は市街地のシカ(24.3%、35/144)と里山のシカ(4.3%、1/23)から分離され たが、山間部のシカ(0/30)からは分離されなかった。また、キノロン耐性大腸菌について、CPFX 耐性大腸菌は市街地のシカ(11.1%、16/144)と里山の(4.3%、1/23)から分離されたが、山間部 のシカ(0/30)からは分離されなかった。市街地の複数のシカが保有する薬剤耐性菌と里山のシカ が保有する薬剤耐性菌の遺伝子型は異なり、市街地のシカから里山のシカへの薬剤耐性菌の拡散は認 められなかった。

表 70 2013 年から 2017 年に野生動物から分離した *Escherichia coli* の薬剤耐性率 (%)

		シナ	ל		イノシシ		小型哺乳	礼類			その他	
薬剤(BP)	山間部	神社	公園	小計	山間部	家畜施設	都市部	山間部	小計	アナグマ	トカラ牛	アマミノ クロウサギ
株数	327	102	96	525	224	106	47	46	199	10	3	2
耐性数*	15	5	11	31	18	30	6	0	36	4	2	1
耐性率(%)	4.6	4.9	11.5	5.9	8.0	28.3	14.0	0.0	18.1	40.0	66.7	50.0
ABPC (32)	0.6	2.0	0.0	0.8	3.6	23.6	0.0	0.0	12.6	10.0	0.0	0.0
CEZ (32)	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0	1.5	0.0	0.0	0.0
CTX (4)	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	1.0	0.0	0.0	0.0
MEPM (2)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GM (16)	0.3	0.0	0.0	0.2	0.4	2.8	0.0	0.0	1.5	0.0	0.0	0.0
KM (64)	0.9	0.0	0.0	0.6	1.3	5.7	0.0	0.0	3.0	20.0	0.0	0.0
TC (16)	3.1	2.0	11.5	4.4	4.0	17.9	12.8	0.0	12.6	20.0	33.3	0.0
NA (32)	0.9	0.0	0.0	0.6	0.9	11.3	0.0	0.0	6.0	0.0	0.0	0.0
CPFX (2)	0.3	0.0	0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CL (4)	1.2	2.9	1.0	1.5	1.3	3.8	0.0	0.0	2.0	10.0	33.3	50
CP (32)	0.0	0.0	0.0	0.0	1.8	1.9	0.0	0.0	1.0	0.0	0.0	0.0
ST (76/4)	0.6	2.0	0.0	0.8	0.9	18.9	6.4	0.0	11.6	0.0	0.0	0.0

BP の単位は μg/mL。*少なくとも1薬剤に耐性を示した株数。

Asai T, Usui M, Sugiyama M, Izumi K, Ikeda T, Andoh M. Antimicrobial susceptibility of *Escherichia coli* isolates obtained from wild mammals between 2013 and 2017 in Japan. J Vet Med Sci. 82(3): 345-349, 2020より引用

表 71 野生動物由来の Escherichia coli の薬剤耐性率 (%)

	シカ	アマミノクロウサギ	カワウ	マガン
薬剤 (BP)	(2016~2019年)	(2017~2020年)	(2018~2019年)	(2019年)
		奄美大島	群馬・岐阜・滋賀・大分	北海道・宮島
株数	848	135	144	110
耐性数*	9	0	8	1
耐性率(%)	1.1	0.0	5.6	0.9
ABPC (32)	0.1	0.0	3.5	0.9
CEZ (32)	0.1	0.0	0.0	0.9
CTX (4)	0.0	0.0	0.0	0.0
MEPM (2)	実施せず	0.0	0.0	0.0
GM (16)	0.0	0.0	0.0	0.0
KM (64)	0.0	0.0	0.0	0.0
TC (16)	0.0	0.0	2.8	0.0
NA (16)	0.0	0.0	1.4	0.0
CPFX (2)	0.0	0.0	0.7	0.0
CL (4)	実施せず	0.0	0.7	0.0
CP (32)	0.1	0.0	1.4	0.0
ST (76/4)	0.6	0.0	1.4	0.0

BP の単位は $\mu g/mL$ 。* 少なくとも 1 薬剤に耐性を示した株数。

シカ:Tamamura-Andoh Y, Tanaka N, Sato K, Mizuno Y, Arai N, Watanabe-Yanai A, Akiba M, Kusumoto M. A survey of antimicrobial resistance in *Escherichia coli* isolated from wild sika deer (*Cervus nippon*) in Japan. J Vet Med Sci. 83 (5): 754-758, 2021

アマミノクロウサギ: Matsunaga N, Suzuki M, Andoh M, Ijiri M, Ishikawa K, Obi T, Chuma T, Fujimoto Y. Analysis of fecal samples from Amami rabbits (*Pentalagus furnessi*) indicates low levels of antimicrobial resistance in *Escherichia coli*. Eur J Wildl Res 66: 84, 2020.

カワウ: Odoi JO, Sugiyama M, Kitamura Y, Sudo A, Omatsu T, Asai T. Prevalence of antimicrobial resistance in bacteria isolated from Great Cormorants (*Phalacrocorax carbo hanedae*) in Japan. J Vet Med Sci. 83 (8): 1191-1195, 2021. マガン: Fukuda A, Usui M, Ushiyama K, Shrestha D, Hashimoto N, Sakata MK, Minamoto T, Yoshida O, Murakami K, Tamura Y, Asai T. Prevalence of antimicrobial-resistant *Escherichia coli* in migratory Greater White-fronted Goose (*Anser albifrons*) and their habitat in Miyajimanuma, Japan. J Wildl Dis. 57(4): 954-958, 2021.

^{*}データは以下よりそれぞれ引用。

表 72 2018 年から 2021 年に野生動物から分離した Escherichia coli の薬剤耐性率 (%)

薬剤 (BP)	シカ	ハクビ シン	イノシシ	ヌー トリ ア	タヌキ	キツネ	イタ チ	アナグマ	サル	ヒメ ネズ ミ	ノネコ	クマ	テン	アラ イグ マ
株数	517	61	54	33	24	11	11	9	9	7	6	3	3	2
耐性数*	28	1	4	0	0	1	0	1	1	0	0	0	0	1
耐性率(%)	5.4	1.6	7.4	0.0	0.0	9.1	0.0	11.1	11.1	0.0	0.0	0.0	0.0	50.0
ABPC (32)	0.4	1.6	0.0	0.0	0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CEZ (32)	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CTX (4)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEPM (2)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GM (16)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KM (64)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TC (16)	4.1	0.0	7.4	0.0	0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NA (16)	0.0	0.0	0.0	0.0	0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CPFX (2)	0.0	0.0	0.0	0.0	0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CL (4)	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.1	0.0	0.0	0.0	0.0	50.0
CP (32)	0.0	0.0	0.0	0.0	0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ST (76/4)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

BP の単位は $\mu g/mL$ 。* 少なくとも 1 薬剤に耐性を示した株数。

Asai T, Usui M, Sugiyama M, Andoh M. A survey of antimicrobial-resistant *Escherichia coli* prevalence in wild mammals in Japan using antimicrobial-containing media. J Vet Med Sci. 84(12): 1645-1652, 2022より引用

表 73 抗菌剤含有培地を用いた野生動物における薬剤耐性菌の分布調査

調査地域	調査年	動物種	CTX 耐性大腸菌	CIP 耐性大腸菌	報告者
岐阜・和歌山・鹿	2018-2021	シカ	2/243 (0.8%)	2/243 (0.8%)	
児島県					
岐阜県	2018-2021	ハクビシ	0/22 (0%)	1/22 (4.5%)	
		ン			A: -+ -1 2022
岐阜・山口県	2018-2021	アナグマ	1/6 (16.7)	0/6 (0%)	- Asai et al., 2022
岐阜県	2018-2021	キツネ	1/4 (25%)	2/4 (50%)	
岐阜県	2018-2021	アライグ	1/2 (50%)	1/2 (50%)	
		₹			
神奈川県・市街地	2016-2017	タヌキ	20/80 (25%)	実施せず	Shimizu et al., 2023
奈良市・市街地	2018	シカ	実施せず	22/59 (37.3%)	Ikushima et al., 2021
奈良市・市街地	2019-2020	シカ	35/144 (24.3%)	16/144 (11.1%)	
奈良市・里山	2018-2021	シカ	1/23 (4.3%)	1/23 (4.3%)	Ikushima et al., 2023
奈良県・山間部	2019	シカ	0/30 (0%)	0/30 (0%)	

Asai T, Usui M, Sugiyama M, Andoh M. A survey of antimicrobial-resistant *Escherichia coli* prevalence in wild mammals in Japan using antimicrobial-containing media. J Vet Med Sci. 84(12): 1645-1652, 2022.

Shimizu T, Kido N, Miyashita N, Tanaka S, Omiya T, Morikaku K, Kawahara M, Harada K. Antimicrobial resistance in *Escherichia coli* isolates from Japanese raccoon dogs (*Nyctereutes viverrinus*) in Kanagawa Prefecture, Japan: Emergence of extended-spectrum cephalosporin-resistant human-related clones. J Med Microbiol. 71(12) 001631, 2022. companion.

Ikushima S, Torii H, Asano M, Suzuki M, Asai T. Clonal Spread of Quinolone-Resistant *Escherichia coli* among Sika Deer (*Cervus nippon*) Inhabiting an Urban City Park in Japan. J Wildl Dis. 57(1): 172-177, 2021.

Ikushima S, Torii H, Sugiyama M, Asai T. Characterization of quinolone-resistant and extended-spectrum β -lactamase-producing *Escherichia coli* derived from sika deer populations of the Nara Prefecture, Japan. J Vet Med Sci. 85(9): 937-941, 2023.

(3)食品

食品由来耐性菌の状況については研究事業の結果に基づいている(令和 4 年度厚生労働科学研究費補助金食品安全確保推進研究事業・総括研究報告書「ワンヘルスに基づく食品由来薬剤耐性菌のサーベイランス体制強化のための研究」(研究代表者管井基行)。各地方衛生研究所(地研、任意参加している 22 の地研)が当該地の市販肉を購入後、これまでに確立したプロトコルにしたがって、食肉を汚染しているサルモネラ、カンピロバクター、大腸菌等を対象に選択培地を用いて培養・分離した。その分離菌株の 17 種の薬剤について薬剤感受性検査を CLSI ディスク拡散法により実施した。サルモネラの結果については、④ ii, Non-typhoidal Salmonella,(地方衛生研究所)の項にまとめられている(p.34~p.40 参照)。概要としては、血清型 S. Infantis、S. Schwarzengrund、及び S. Manhattanにおいては、食品由来分離株はヒト患者糞便由来分離株の薬剤耐性分離率や耐性パターンと高い類似性があり、食品由来耐性菌とヒト由来耐性菌との間には強い関連性があることが示唆された。

カンピロバクターの薬剤耐性菌出現状況:フルオロキノロン系薬剤に耐性を示した割合は *C. jejuni* が 52.7%、 *C. coli* が 91.7%で高率であった。カンピロバクター腸炎治療の第一選択薬である EM に対する耐性率は *C. jejuni* で認められなかった。

市販鶏肉由来大腸菌の薬剤耐性菌出現状況:国産鶏肉から分離された大腸菌で耐性率が高かった薬剤は KM、SM、TC、CPの4剤であった。一方、外国産鶏肉から分離された大腸菌で耐性率が高かった薬剤は ABPC、CTX、CAZ、GM、NA の5薬剤であり、ST 合剤、CPFX および NFLX は同程度の耐性率であった。国産由来株と外国産由来株では耐性薬剤の傾向が異なっていた。また、国産由来株の CTX 耐性率は 2019 年以降、1.0-2.4%で推移している。一方、外国産由来株は 3.5%(2020)から 6.6%(2021)、12.2%(2022)と上昇した。

ESBL 産生遺伝子については、サルモネラでは、CTX-M-1 グループと TEM 型がヒト由来株および食品由来株の両方から検出されたが、CTX-M-9 グループはヒト由来株のみに検出された。また、AmpC 遺伝子では、CIT が両方から検出された。一方、大腸菌では、AmpC 遺伝子の保有がほとんど認められず、ESBL 遺伝子が主として検出された。EHEC では CTX-M-1 グループ、TEM 型が検出されたが、CTX-M-9 グループ,CTX-M-2 グループはほとんど検出されなかった。一方、その他の大腸菌では CTX-M-9 グループ、CTX-M-2 グループ、TEM 型が多く検出された。

令和 2 年度のと畜場および食鳥処理場で分離された大腸菌およびサルモネラのうちコリスチンの最小発育濃度(MIC)が 2 μ g/mL 以上の株についてコリスチン耐性遺伝子($mcr-1 \sim mcr-10$)の保有状況を確認したところ、大腸菌から mcr-1 遺伝子、mcr-5 遺伝子、および mcr-3 遺伝子は検出されたが低率であった(各年、動物種毎にいずれも 5%以下)。

健康者糞便由来大腸菌の薬剤耐性菌出現状況:最も耐性率が高かったのは ABPC(31.1%)で、次いで NA(25.8%)、TC (22.7%)、ST 合剤(17.8%)の順であった。フルオロキノロン系薬剤耐性は CPFX 耐性 9.1%,NFLX 耐性 8.7%であり、セファロスポリン系薬剤耐性は 4.2%であり、いずれも例年と同様の傾向であった。コリスチン耐性 mcr 保有株は 1.1%であった。

(4)環境

一般的に、人的活動による汚物は下水処理場等の生活排水処理施設で排水基準まで処理されてその排出水が排水基準に適合したときに環境(河川・海洋)へと放流される。ワンヘルス・アプローチに基づく環境 AMR で注視すべき対象は、人的活動による汚物が下水処理場等の生活排水処理施設で排水基準まで処理された排出水が排水基準に適合したときに環境(河川・海洋)へと放流される環境水の中にどのような薬剤耐性菌(遺伝子)が存在し、我々の日常生活へどのように循環しリスクへと発展しうるのかを評価することにある。

① 厚生労働省の厚生労働科学研究による結果

我が国における調査法の確立及び実態調査

現状、どの程度の薬剤耐性菌(AMR bacteria:ARB)およびそれらに由来する薬剤耐性遺伝子(AMR gene:ARG)が環境へと排出され、その環境に負荷を与え続けているのかについて、定量的な報告はわずかであり、系統だった全国調査が重要であることから、本邦における継続的な環境AMR 調査のため、厚生労働省科学研究「環境中における薬剤耐性菌及び抗微生物剤の調査法等の確立のための研究. 代表: 金森肇 H30-R02、R03-R05」(以下「金森班」という。)が編成された。平成30年度~令和2年度の3年間において本研究班で環境 AMR モニタリングに資する手順書を作成し、環境水の薬剤耐性菌及び残留抗菌薬の調査方法の確立に向けた研究を実施した。この研究によって放流処理水の環境 AMR モニタリング調査を全国展開するための体制を構築し、地方自治体の環境負荷の実態が遺伝子レベルで解明した。また、国内外の文献レビューを行い、環境中の薬剤耐性に関する現状と課題を明らかにした。

平成 30 年度~令和 4 年度にかけて、次世代シークエンサーによる環境水から ARG 等の網羅的配列 解読法(メタゲノム解析)を構築し(国立感染症研究所・病原体ゲノム解析研究センター)、44 自 治体から提供を受けた下水処理場・放流処理水サンプル(2018夏・8月、2019冬・2月、2019夏・ 8月、2020 冬・2月、2020 夏・8月、2021 冬・2月、2021 夏・8月、2022 冬・2月、2022 夏・8 月の計 515 サンプル) のメタゲノム解析を実施した。5 年間(計 9 回) の継続調査の結果、2020 年 冬以降から新型コロナウイルス発生の影響と推定される ARG の増減が確認された。サルファ剤 (Sulphonamide) 耐性遺伝子が 2020 年冬までは増加傾向であったところ、2020 年夏で顕著な減少 を示し、2022 年冬までの 2 年間は低い水準を維持していた。マクロライド耐性遺伝子は 2020 年冬に 減少傾向を一旦示すものの、2022 年冬では新型コロナウイルス発生以前の水準にまで増加し戻って いることが確認された。また、キノロン耐性遺伝子においても同様の減少傾向が見られ、ヒトに対す るキノロン系薬の使用量が減少したこととの関連が示唆されるが、キノロン耐性大腸菌の分離状況と は乖離が見られた。金森班におけるメタゲノム解析では水平伝達により獲得した oqx および qnr遺伝 子を検出対象としているが、キノロン剤阻害ターゲットである gyrA および parC遺伝子上のキノロン 耐性決定領域(quinolone resistance- determining regions:QRDR)の変異は判定していない。水 平伝達により獲得したキノロン耐性遺伝子の頻度が低下して好ましい状況へ近づきつつある可能性が あるが、更なる調査の継続が重要である。本研究で用いたメタゲノム解析法は世界的なメタゲノム解 析法に準じており、各国報告と比較する上でも重要である。引き続き、自治体の協力のもと年 2 回 (夏および冬) の全国調査を実施し、本邦の環境 AMR (Resistome) の基盤を整備していく予定で ある。

放流処理水の ARG に加え、環境で生存し増殖する可能性を有する ARB の存在を特定することは重要である。金森班では、東京湾沿岸の水再生センターでの環境水中から、臨床で分離されることが少ない KPC-2 産生肺炎桿菌 $Klebsiella\ pneumoniae$ (Sequence type 11:ST11) を分離し、ST11 は東アジアで広範に分離される臨床分離株と同一型であったこと 1 、創傷感染症で稀に分離されるアエロモナス属菌が KPC-2 を保有していたこと 2 、NDM-1 よりも広域活性を獲得した NDM-5 カルバペネマーゼを保有する大腸菌が分離されたこと等を報告しており 3 、国内事情が少しずつ明らかになりつつある。また、大阪・淀川流域における病院排水、下水処理場の流入水・放流処理水、および河川水の包括的な AMR 調査が実施され報告されている。オゾン処理されていない下水処理場の放流処理水の包括的な ARB が分離されることや病院排水による環境 AMR 負荷が試算されている 4 。海外の実態と同様、本邦の環境水においても少なからず ARB が分離されている実状がある。

環境 AMR、さらには残留抗菌薬の調査法を確立し、実態調査を行っていくことが重要であることから、環境水中の薬剤耐性の調査法として、下水処理場の放流処理水のメタゲノム解析法の手順書を作成した。メタゲノム解析法に加えて、従来の培養法も重要であり、薬剤耐性遺伝子の検出だけでなく、下水中の生きた薬剤耐性菌の特徴を分析した。メタゲノム解析と培養法によるアプローチの両方を行うことによって、環境水中の薬剤耐性の全体像を理解することにつながることが期待される。

また、金森班では、全国的な環境水 AMR 調査に加えて、地域の病院排水、地域の養豚場の下水の 環境 AMR 調査、地域の下水処理水の残留抗菌薬測定といった、日本における環境 AMR の実態調査 を実施している。これらの調査により得られた知見と環境 AMR に関する文献レビュー結果をもとに リスク評価を行っていく必要がある。海外の環境 AMR の文献を整理するために、環境中の薬剤耐性 に対するイニシアチブ:現状と課題(原文:Initiatives for Addressing Antimicrobial Resistance in the Environment: Current Situation and Challenges. 2018) を翻訳した 5。環境 AMR 対策の重要事 項として、1) 廃棄物が適切に処理されていない場合、当該環境は廃棄物に含まれ得る抗菌薬および 薬剤耐性菌で汚染されるおそれがあること、2) 廃棄物に含まれる抗菌薬や薬剤耐性菌の環境汚染が 人間の健康に与える影響については十分に理解されていないこと、3)薬剤耐性菌の人の健康へのリ スクを理解するため、環境水のどこに、どれだけの薬剤耐性菌が存在しているか評価する必要がある こと、4)環境水中の薬剤耐性菌を測定するためにサンプリングと試験方法を評価し、プラクティス を標準化することなどが挙げられている。また、日本の文献レビューでは、処理後の流出水中や、そ の流出水が流入する河川水中には相当量の薬剤耐性菌・耐性遺伝子が残存しており、環境汚染が懸念 されるということが示されている。また、本邦における臨床分離頻度が稀な薬剤耐性菌(KPC-2 や NDM-5 産生菌等)が下水中から検出されており、下水からは市中の薬剤耐性モニタリングに有用な サンプルを採取することが可能であることが報告されている。このように、国内外において環境中の 薬剤耐性の存在証明がなされているが、環境 AMR の調査法や評価基準が定まっていないことから、 人や動物へのリスクに関するエビデンスが不十分であるという現状がある。

日本における下水 AMR について文献レビューを行った 6 結果、1991 年~2021 年の対象論文 37 報のうち、26 報は AMR、10 報は抗菌薬、1 報は AMR と抗菌薬の両方について報告するものであった。日本の下水中に ESBL 産生菌、CRE、MDRP、MDRA、MRSA、VRE などの臨床的に重要な ARB、ARG、残留抗菌薬の存在が示された。病院排水は臨床的に重要な薬剤耐性菌のリザーバーである可能性があるが、病院排水中の ARB のヒトへの直接的リスクは明らかではない。また、日本で一般的に使用される抗菌薬は、下水中の AMR が増殖しやすい環境が生み出され、さらには増殖による AMR の拡散に寄与するおそれがある。このようなことからヒト、動物、環境における AMR 対策を推進し

ていく必要があるが、ヒトや動物と比べて環境中の AMR に関する知見はまだ乏しいため、日本における環境 AMR の実態調査や研究の進展が期待される。

これまで、院内感染事例では、実地疫学と分離菌の分子疫学解析の結果に基づいて、感染伝播や健康影響のリスク評価を行う取組が行われてきているが、上述のとおり概して環境由来の薬剤耐性菌がヒト等の健康に影響を与えていることを示す研究結果は乏しい。海外では、河川灌漑水が原因と推定される野菜の汚染⁷や水系レクリエーションにおける AMR への曝露リスク等への評価⁸も少しずつであるが報告されつつあるためある一定のリスク循環が想定されている。現時点において環境リスクを論じるための確たる基準設定が難しい状況ではあるが、環境 AMR を定量的に調査・評価すること、そして健康リスクを評価しうる研究の実施や国内外の主要文献のレビューとリスクアセスメントを通して、環境 AMR 負荷の主要因を解明し、ヒトおよび動物への健康リスクへと発展しているのかを探究していくことが急務である。環境中の薬剤耐性のヒト・動物へのリスクを評価するために、感染症へのヒト-動物-環境インターフェイスでの多分野にわたるワンへルス・アプローチが不可欠である。環境

② 環境研究総合推進費課題成果(令和2年度~令和4年度)10

様々な薬剤や薬剤耐性菌を含む排水が最終的に流入する水環境は、薬剤耐性菌が拡大するリザーバーとなっている可能性が指摘されており、薬剤耐性菌の拡大を抑制するためにも、水環境における薬剤耐性遺伝子の伝播メカニズムを明らかにすることが重要である。そこで、令和2年度~令和4年度環境研究総合推進費課題「環境中における薬剤耐性遺伝子の伝播ポテンシャルと伝達機構の解明」において、日本の主要河川を対象とした薬剤耐性菌の分布調査、in vitro 伝達実験を用いた薬剤耐性遺伝子の伝播ポテンシャルの評価実験等が実施された。

薬剤耐性菌の分布調査では、東北地方の8つの河川(赤川、最上川、雄物川、岩木川、馬淵川、北 川、名取川、阿武隈川)を対象とした調査を実施した。全ての河川において、河川水中の大腸菌濃度 は、採水日で A 類型の環境基準を満たし、大腸菌汚染が少ないと判定された。検出された大腸菌を分 離・同定し、18 薬剤に対する薬剤感受性を評価した。その結果、試験した抗菌薬に対して 1 薬剤以 上に耐性を示す薬剤耐性大腸菌が 26.8%検出され、アンピシリンに対して最多の 178 株(24.2%)が 耐性を示した ¹¹⁾。また、ABPC に耐性を示した菌株のうち、セフォタキシムとセファゾリンに耐性を 示す株がそれぞれ 23 株 (3.5%) と 1 株 (0.2%) 検出された。全大腸菌単離株ののうち 10%が異なる 3 薬剤以上に耐性を示す多剤耐性菌(アンピシリン、アモキシシリン/クラブラン酸、テトラサイクリ ン、キノロン系抗菌薬(シプロフロキサシン、レボフロキサシン)であった。また、WHO により危 険性が高いと位置づけられる ESBL 産生大腸菌も検出された。赤川と最上川の 1 年間の河川モニタリ ングを行うことで、ESBL 産生大腸菌を分離することができたことから、その分離株の ESBL 産生遺 伝子 (bla) の特徴づけを行った。試験した 21 種類の bla のうち 17 種類が検出され、bla_{CTX-M-group-1} が最も多く検出された。注目すべき点は、国内型カルバペネマーゼである bla_{MP} だけでなく、国内で の検出事例が少ないために海外型とされる bla_{KPC}や bla_{OXA-48}、 bla_{VIM}、 bla_{NDM} も検出された点である。 地点ごとに bla の検出数を比較すると、下水処理場の直下で分離された株から、最も多い 15 種類の bla が検出された。臨床医療の現場だけでなく、市中で生活する健常者もまた、河川に生息する薬剤 耐性菌の排出源になっていることを示す結果が得られた。

in vitro 伝達実験を用いた薬剤耐性遺伝子の伝播ポテンシャルの評価実験では、腸球菌と大腸菌をモデル細菌として、環境を模擬した in vitro 伝達実験を行った結果、腸球菌では vanA のみ伝播が確認され、供与菌と受容菌の組み合わせによっては伝播ポテンシャルが $10^{-3}\sim10^{-7}$ の範囲であることが確認された。また、河川水などの液相中では伝播が確認されず、菌体が集積する環境である活性汚泥

中では、低確率であるが伝播が確認された(10^{-7})。他方で、 $bla_{\text{CTX-M}}$ を保有する腸内細菌目細菌を用いた場合は、いずれの環境を模擬した条件でも伝播が確認された($10^{-4}\sim10^{-8}$)。さらに、グラム陰性細菌は、グラム陽性細菌と比較して、薬剤耐性遺伝子を伝播する場(伝場)のポテンシャルが高いことが示された。環境中における薬剤耐性遺伝子の伝播も十分に考えられ、特に細菌密度が高いと想定される箇所には重点的な処理が必要であることが示唆された。

我が国の河川水中には既に薬剤耐性大腸菌や ESBL 産生大腸菌が拡散していることが浮き彫りとなった。一方で、これら環境中の AMR の起源や、ヒトと動物に対する影響がどの程度あるのかは不明である。薬剤耐性菌は、ヒトと動物を起源として環境へ排出されていることは間違いないが、環境からヒトと動物への影響を明らかにするには、環境分野における積極的な情報の蓄積が必要である。

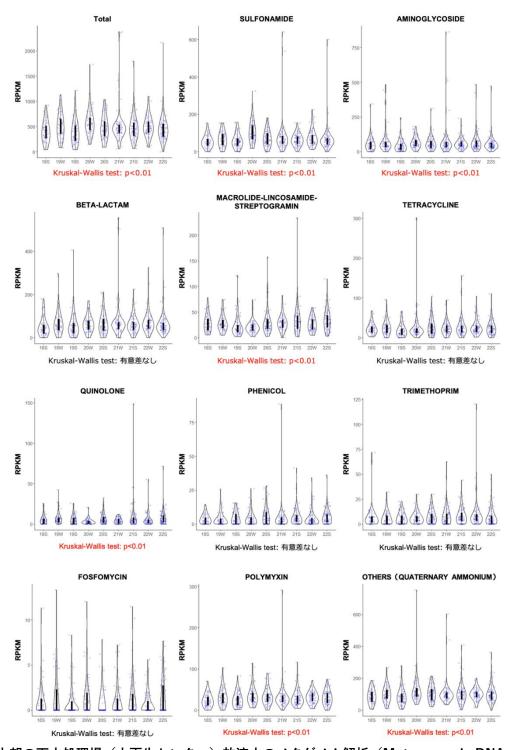


図3 本邦の下水処理場(水再生センター)放流水のメタゲノム解析(Metagenomic DNA-Seq) 2018 年夏(18S)から年 2 回の調査にて 2022 年夏(22S)までの計 9 回の期間において自治体から提供された処理放流水から検出された各種カテゴリーの薬剤耐性因子(ARG)を RPKM(Reads Per Kilobase of gene per Million mapped reads)で標準化した。 2018 年以降、ARGs データベースの更新が頻繁に行われているため、全検体から得たメタゲノムデータを改めて ARGs_OAP v3.2.2¹²で ARGs の RPKM を算出した。

引用文献

- Sekizuka T, Yatsu K, Inamine Y, et al. Complete Genome Sequence of a blaKPC-2-Positive Klebsiella pneumoniae Strain Isolated from the Effluent of an Urban Sewage Treatment Plant in Japan. mSphere 2018.
- 2. Sekizuka T, Inamine Y, Segawa T, Hashino M, Yatsu K, Kuroda M. Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan. Environ Microbiol Rep 2019;11: 589-97.
- 3. Sekizuka T, Inamine Y, Segawa T, Kuroda M. Characterization of NDM-5- and CTX-M-55-coproducing Escherichia coli GSH8M-2 isolated from the effluent of a wastewater treatment plant in Tokyo Bay. Infect Drug Resist 2019;12: 2243-9.
- 4. Azuma T, Otomo K, Kunitou M, et al. Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan. Sci Total Environ 2019;657: 476-84.
- 5. 環境中の薬剤耐性に対するイニシアチブ 現状と課題 (翻訳) (http://amr.ncgm.go.jp/medics/2-8-1.html#sonota)
- 6. Baba H, Nishiyama M, Watanabe T, Kanamori H. Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antibiotics (Basel). 2022;11: 849.
- 7. Van Hoek AH, Veenman C, van Overbeek WM, Lynch G, de Roda Husman AM, Blaak H. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables. Int J Food Microbiol 2015;204: 1-8.
- 8. Leonard AFC, Zhang L, Balfour AJ, et al. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ Int 2018;114: 326-33.
- 9. Kanamori H, Baba H, Weber DJ. Rethinking One Health approach in the challenging era of COVID-19 pandemic and natural disasters. Infect Ecol Epidemiol. 2020;11: 1852681.
- 10. 環境研究総合推進費 終了研究成果報告書 5RF-2005 環境中における薬剤耐性遺伝子の伝播ポテンシャルと 伝達機構の解明 (JPMEERF20205R05) 令和 2 年度~令和 4 年度 https://www.erca.go.jp/suishinhi/seika/db/pdf/end_houkoku/5RF-2005.pdf
- 11. 森祐哉、西山正晃、米田一路、渡部徹,山形県の赤川水系から単離した大腸菌の系統発生群とその薬剤感受性、環境工学研究論文集 第59巻、2022 年78巻7号 p. III_307-III_316

7. 日本における抗菌薬使用量の現状

(1)ヒト用抗菌薬

① 日本全体の抗菌薬使用状況

データ元: JSAC (抗菌薬使用サーベイランス)

2013 年から 2022 年までの日本における販売量に基づいた抗菌薬の使用状況を表 72 (経口薬)、 表 73(注射用薬)、表 74(経口および注射抗菌薬合計)に示す。日本における 2021 年の全体の抗 菌薬使用は 9.77 DID であり、2020 年の代表的な欧州諸国の DID と比較すると、フランス(21.5 DID)、イタリア(17.5 DID)、スウェーデン(10.1 DID)よりも低く、オランダ(8.3 DID)、オー ストリア($8.8\,\mathrm{DID}$)よりも高かった 1 。経年的な変化をみると、 $2013\,$ 年から $2016\,$ 年までは抗菌薬使 用に大きな変化を認めなかったが、2017 年以降低下に転じたものの減少幅が小さくなってきていた。 そうした流れのなかで新型コロナウイルス感染症の流行があり、2020 年は全体の抗菌薬使用はそれ までの減少幅に比べ大幅に抗菌薬使用が減少した。2022 年は横ばい傾向であり、9.78 DID であった。 2020 年と比べ、2022 年は 3.9%減少していた。2022 年における抗菌薬全体に占める経口薬の使用 (表 72) は 8.84 DID (90.4%) であり、そのうち、日本の AMR 対策アクションプランで 40%削減目 標となっている経口第 3 世代セファロスポリン系薬(1.63 DID)、30%削減目標となっている経口フ ルオロキノロン系薬 (1.52 DID) 、25%削減目標となっている経口マクロライド系薬 (2.66 DID) の 合計は経口抗菌薬全体の 65.7%を占めていた。2013 年以降この傾向は変化していないが、各使用を 2020 年と比べると、2022 年の経口第 3 世代セファロスポリン系薬、経口フルオロキノロン系薬、経 ロマクロライド系薬それぞれ 11.9%、8.4%、9.2%減少していた。また、注射カルバペネム系抗菌薬 は、2020年と比較して 2022年は 2.9%増加していた(表 73)。2019年は特にセファゾリンの供給 不足問題が生じた影響で、第1世代セファロスポリン系薬が減少し、狭域ペニシリン系薬や β ラク タマーゼ配合ペニシリン、第 2、3 世代セファロスポリン系薬、カルバペネム系薬が増加した可能性 が考えられた²。2020年以降は全体として抗菌薬使用量が減少していたが、これは抗菌薬適正使用が 推進されただけでなく、新型コロナウイルス感染症も影響(新型コロナウイルス感染症以外の感染症 による受診患者の減少等) していると考えられ、同疾患の流行が継続していることもあり 2022 年以 降も同様の傾向が続いて見られた。

WHO が抗菌薬適正使用の指標として推奨している AWaRe 分類により抗菌薬を分類した結果を表75 に示す。AWaRe 分類は WHO の必須医薬品リスト(Model Lists of Essential Medicines)第 20 版に掲載された抗菌薬分類を適正使用の指標として応用したもので、抗菌薬を"Access"(一般的な感染症の第一選択薬、または第二選択薬として用いられる耐性化の懸念の少ない抗菌薬で、すべての国が高品質かつ手頃な価格で、広く利用出来るようにすべき抗菌薬。例. アンピシリン、セファレキシンなど)、"Watch"(耐性化が懸念されるため、限られた疾患や適応にのみ使用すべき抗菌薬。例. バンコマイシン、メロペネム、レボフロキサシン、セフトリアキソンなど)、"Reserve"(他の手段が使用できなくなった時に最後の手段として使用すべき抗菌薬。例. チゲサイクリン、コリスチン、ダプトマイシンなど)、未分類の4カテゴリーに分類している。この分類は 2019 年に改訂され、新たに、"非推奨"(WHO で臨床上の使用を推奨していない抗菌薬。例. セフォペラゾン・スルバクタム)のカテゴリーが追加された。WHO は全抗菌薬に占める"Access"に分類される抗菌薬の占める割合を60%以上にすることを目標としている。日本は他国と比較して"Access"に分類される抗菌薬の占める割合が少ない傾向があるが 3 、2013 年から経年的にみると、11.0%から 2022 年は 23.8%へと徐々に

上昇し、"Watch"に分類される抗菌薬の占める割合は 87.6%から 74.9%へと低下してきており、アクションプラン (2023-2027) で推奨されている取組みに向かっているともいえる。

しかしながら、抗菌薬の供給不足問題や新型コロナウイルス感染症の影響など、さまざまな要因も 懸念されるため、引き続き注視が必要である。

また、ワンヘルスの観点から経口と注射用抗菌薬の使用量を力価換算して重量ベースでの使用状況を調査したところ(表 76)、全体の使用量も減少が確認された。経口の第 3 世代セファロスポリン系薬、フルオロキノロン系薬、マクロライド系薬の使用量の減少が全体の半数を占めており、新型コロナウイルス感染症の影響などを含め、適正使用の観点から要因を明らかにする必要がある。また、一時的な減少もありうるため、今後の抗菌薬使用の推移も慎重に継続してみていくことが重要である。AMR 対策アクションプランの目標の1つであった監視体制を構築できたことにより、経年的に日本における抗菌薬の使用状況を評価できるようになった。2019 年までは経口薬は漸減したことでAMR 対策の影響が認められたものの、注射用抗菌薬は横ばいから増加を続け、高齢者人口の増加などによる影響が考えられた。しかし、2020 年は、経口薬はさらに減少し、注射用抗菌薬も減少に転じた。減少した要因の1つには、新型コロナウイルス感染症に伴うさまざまな影響が考えられ、現時点での再度の増加は見られていないが、今後の推移を把握することが必要である。さらに、販売量データに基づいた抗菌薬使用状況のみならず、匿名医療保険等関連情報データベース(NDB)に基づいた抗菌薬使用のサーベイランスも継続することで、抗菌薬の使用目的を明らかにし、適正性を評価していく。

表 74 日本における販売量に基づいた経口抗菌薬の使用動向

	2013年	2014 年	2015年	2016年	2017年	2018年	2019年	2020年	2021年	2022 年
Tetracyclines	0.76	0.75	0.77	0.80	0.81	0.88	0.96	1.10	1.18	1.18
Amphenicols	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Penicillins with extended spectrum	0.60	0.61	0.68	0.66	0.65	0.69	0.77	0.61	0.59	0.60
Beta Lactamase-sensitive penicillins	0.01	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Combinations of penicillins, including	0.15	0.16	0.17	0.18	0.19	0.20	0.23	0.18	0.19	0.19
1st generation cephalosporins	0.07	0.07	0.07	0.07	0.07	0.08	0.09	0.09	0.10	0.11
2nd generation cephalosporins	0.30	0.30	0.29	0.29	0.28	0.28	0.30	0.29	0.31	0.32
3rd generation cephalosporins	3.54	3.41	3.46	3.32	3.08	2.83	2.63	1.85	1.70	1.63
Carbapenems	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	< 0.01
Other cephalosporins and penems	0.14	0.14	0.13	0.12	0.12	0.11	0.10	0.09	0.09	0.08
Combinations of sulfonamides and	0.25	0.27	0.29	0.31	0.33	0.36	0.38	0.41	0.44	0.46
Macrolides	4.83	4.50	4.59	4.56	4.18	3.96	3.84	2.93	2.72	2.66
Lincosamides	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
Fluoroquinolones	2.83	2.83	2.71	2.75	2.57	2.42	2.32	1.66	1.48	1.52
Other quinolones	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Other antibacterials	0.10	0.10	0.10	0.10	0.09	0.08	0.08	0.06	0.06	0.06
合計	13.62	13.18	13.30	13.19	12.38	11.92	11.74	9.31	8.88	8.84

※単位は DID(DDDs/1,000 inhabitants/day)を使用した。

※DDD (defined daily dose) は 2023 年 1 月 1 日時点のものを使用した。

表 75 日本における販売量に基づいた注射用抗菌薬の使用動向

	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年	2022 年
Tetracyclines	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Amphenicols	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Penicillins with extended spectrum	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Beta-lactamase sensitive penicillins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
Combinations of penicillins, incl. beta-lactamase inhibitors	0.13	0.15	0.16	0.18	0.19	0.21	0.22	0.18	0.20	0.23
First-generation cephalosporins	0.13	0.13	0.14	0.14	0.15	0.15	0.12	0.13	0.14	0.15
Second-generation cephalosporins	0.11	0.11	0.10	0.10	0.10	0.09	0.10	0.08	0.08	0.09
Third-generation cephalosporins	0.18	0.19	0.21	0.22	0.23	0.24	0.27	0.22	0.21	0.22
Fourth-generation cephalosporins	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02
Monobactams	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbapenems	0.09	0.08	0.08	0.08	0.08	0.08	0.08	0.07	0.07	0.07
Other cephalosporins and penems	-	-	-	-	-	-	< 0.01	< 0.01	< 0.01	< 0.01
Combinations of sulfonamides and trimethoprim, incl. derivatives	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Macrolides	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Lincosamides	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01
Streptogramins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-
Streptomycins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Other aminoglycosides	0.05	0.05	0.05	0.04	0.04	0.03	0.03	0.03	0.02	0.02
Fluoroquinolones	0.03	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03
Glycopeptide antibacterials	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Polymyxins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Metronidazole	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Other antibacterials	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01
総計	0.90	0.90	0.94	0.96	0.98	0.99	1.01	0.87	0.89	0.94

[※]単位は DID(DDDs/1,000 inhabitants/day)を使用した。

[※]DDD (defined daily dose) は 2023 年 1 月 1 日時点のものを使用した。

表 76 日本における販売量に基づいた経口および注射用抗菌薬合計の使用動向

	2013年	2014 年	2015年	2016年	2017年	2018年	2019年	2020年	2021年	2022 年
Tetracyclines	0.79	0.77	0.79	0.82	0.83	0.90	0.98	1.12	1.19	1.19
Amphenicols	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Penicillins with extended	0.63	0.64	0.70	0.68	0.67	0.71	0.79	0.63	0.61	0.62
Beta-lactamase sensitive	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	< 0.01	< 0.01
Combinations of penicillins, incl.	0.29	0.31	0.34	0.36	0.38	0.41	0.45	0.36	0.38	0.42
First-generation cephalosporins	0.20	0.20	0.20	0.21	0.22	0.23	0.21	0.22	0.24	0.26
Second-generation	0.41	0.40	0.39	0.39	0.37	0.38	0.41	0.38	0.39	0.41
Third-generation cephalosporins	3.72	3.60	3.67	3.54	3.31	3.07	2.90	2.07	1.91	1.85
Fourth-generation	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02
Monobactams	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbapenems	0.10	0.10	0.10	0.10	0.09	0.09	0.09	0.07	0.08	0.07
Other cephalosporins and	0.14	0.14	0.13	0.12	0.12	0.11	0.10	0.09	0.09	0.08
Combinations of sulfonamides	0.25	0.27	0.29	0.32	0.34	0.36	0.39	0.41	0.44	0.46
Macrolides	4.84	4.51	4.59	4.56	4.18	3.96	3.84	2.93	2.73	2.66
Lincosamides	0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.03	0.03	0.03
Streptogramins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-
Streptomycins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Other aminoglycosides	0.05	0.05	0.05	0.04	0.04	0.03	0.03	0.03	0.02	0.02
Fluoroquinolones	2.86	2.86	2.74	2.78	2.60	2.45	2.35	1.69	1.51	1.55
Other quinolones	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Glycopeptide antibacterials	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Polymyxins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Metronidazole	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Other antibacterials	0.12	0.12	0.12	0.12	0.10	0.10	0.10	0.08	0.07	0.07
合計	14.52	14.08	14.23	14.15	13.36	12.91	12.75	10.18	9.77	9.78

※単位は DID (DDDs/1,000 inhabitants/day) を使用した。

※DDD (defined daily dose) は 2023 年 1 月 1 日時点のものを使用した。

表 77 AWaRe 分類により分類した日本における抗菌薬の使用動向

AWaRe 分類	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年	2022 年
(0/)	1.62	1.67	1.79	1.84	1.90	2.06	2.25	2.17	2.29	2.39
Access (%)	(10.96)	(11.62)	(12.31)	(12.72)	(13.94)	(15.65)	(17.29)	(20.89)	(22.83)	(23.78)
Wetch (9/)	12.94	12.47	12.51	12.39	11.54	10.93	10.59	8.08	7.59	7.52
Watch (%)	(87.57)	(86.92)	(86.27)	(85.91)	(84.71)	(83.03)	(81.40)	(77.68)	(75.78)	(74.90)
Reserve (%)	0.19	0.18	0.18	0.17	0.16	0.15	0.15	0.13	0.12	0.12
Reserve (%)	(1.288)	(1.289)	(1.252)	(1.204)	(1.186)	(1.156)	(1.141)	(1.252)	(1.216)	(1.151)
非推奨(%)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
升任吳(/0)	(0.155)	(0.155)	(0.152)	(0.149)	(0.154)	(0.153)	(0.158)	(0.167)	(0.163)	(0.157)
未分類(%)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	-
本力規(70)	(0.011)	(0.010)	(800.0)	(0.007)	(0.006)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)
Total	14.78	14.34	14.50	14.43	13.63	13.17	13.00	10.40	10.01	10.04

[※]単位は DID(DDDs/1,000 inhabitants/day)を使用した。

[※]DDD (defined daily dose) は 2023 年 1 月 1 日時点のものを使用した。AWaRe 分類は 2021 年版を使用した。

[※]上記は、WHO の AWaRe 分類に準拠しているため、一部 ATC コード J01 以外も含めたため、これまでの値と若干の変更がある。

表 78 日本における販売量に基づき力価換算した重量ベースでの抗菌薬消費量 (t)

	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年	2022 年
Tetracyclines	7.1	6.9	7.1	7.2	7.0	7.3	7.7	8.4	8.7	8.5
Amphenicols	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Penicillins with extended spectrum	53.7	53.6	57.6	56.3	54.5	57.3	62.6	49.3	47.9	48.5
Beta Lactamase-sensitive penicillins	1.7	1.8	1.7	1.5	1.4	1.3	1.8	1.3	1.1	1.1
Combinations of penicillins, including	88.4	95.7	106.1	114.9	124.4	132.2	146.0	118.0	129.2	146.4
1st generation cephalosporins	25.0	24.9	25.2	26.3	27.2	28.4	24.9	26.5	28.9	30.2
2nd generation cephalosporins	28.5	27.4	27.0	26.7	25.9	26.0	28.6	25.5	26.5	27.7
3rd generation cephalosporins	97.7	95.1	97.8	95.9	91.2	86.6	85.3	64.0	59.8	58.8
4th generation cephalosporins	6.6	6.1	6.0	5.7	5.5	4.8	4.5	4.3	4.2	4.4
Monobactams	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Carbapenems	9.9	9.9	10.1	10.2	10.1	9.8	10.0	8.8	9.1	9.1
Other cephalosporins and penems	4.8	4.7	4.6	4.3	4.0	3.8	3.6	3.3	3.0	2.9
Combinations of sulfonamides and	45.8	49.9	53.7	58.6	62.1	65.7	71.0	75.7	81.2	84.6
Macrolides	108.0	101.4	103.4	102.9	94.5	89.7	87.2	67.8	63.4	61.9
Lincosamides	2.8	2.7	2.6	2.5	2.4	2.4	2.7	2.1	2.1	2.2
Streptogramins	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	=	=	=
Streptomycin	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Other aminoglycosides	1.0	0.9	0.9	0.8	0.8	0.7	0.7	0.5	0.5	0.5
Fluoroquinolones	61.3	60.2	56.6	57.4	53.2	50.1	47.7	33.0	29.2	29.1
Other quinolones	0.5	0.4	0.3	0.3	0.2	0.1	0.1	0.1	< 0.1	< 0.1
Glycopeptides	2.2	2.1	2.3	2.4	2.5	2.4	2.6	2.7	2.4	2.6
Polymyxins	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Metronidazole (parenteral)	< 0.1	< 0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Other antibacterials	17.5	16.5	16.6	16.7	14.3	13.8	13.1	10.3	9.3	8.9
TOTAL	563.0	560.6	580.1	591.4	581.6	582.9	600.2	501.9	507.0	527.8

表 79 日本における NDB に基づいた経口および注射用抗菌薬合計の使用動向

	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年
Tetracyclines	0.75	0.74	0.75	0.78	0.79	0.85	0.93	1.06	1.13
Amphenicols	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Penicillins with extended spectrum	0.53	0.56	0.64	0.64	0.63	0.67	0.76	0.61	0.61
Beta-lactamase sensitive penicillins	0.01	0.01	0.01	0.01	< 0.01	< 0.01	0.01	0.01	< 0.01
Combinations of penicillins, incl. beta-lactamase inhibitors	0.25	0.27	0.29	0.31	0.33	0.35	0.38	0.31	0.33
First-generation cephalosporins	0.14	0.15	0.16	0.16	0.17	0.18	0.17	0.19	0.22
Second-generation cephalosporins	0.34	0.35	0.36	0.35	0.34	0.34	0.37	0.35	0.36
Third-generation cephalosporins	3.47	3.54	3.69	3.57	3.34	3.11	2.94	2.10	1.91
Fourth-generation cephalosporins	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02
Monobactams	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbapenems	0.08	0.08	0.08	0.08	0.08	0.07	0.07	0.06	0.06
Other cephalosporins and penems	0.12	0.12	0.12	0.11	0.11	0.10	0.10	0.09	0.08
Combinations of sulfonamides and trimethoprim, incl. derivatives	0.23	0.25	0.27	0.29	0.31	0.33	0.36	0.38	0.42
Macrolides	4.97	4.93	5.07	5.03	4.64	4.44	4.37	3.30	3.04
Lincosamides	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Streptogramins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	=
Streptomycins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Other aminoglycosides	0.05	0.05	0.05	0.04	0.04	0.03	0.03	0.02	0.02
Fluoroquinolones	2.78	2.74	2.93	2.93	2.74	2.61	2.51	1.78	1.63
Other quinolones	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Glycopeptide antibacterials	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03
Polymyxins	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Metronidazole	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Other antibacterials	0.11	0.11	0.11	0.11	0.09	0.09	0.09	0.07	0.06
合計	13.93	13.99	14.63	14.51	13.70	13.28	13.15	10.41	9.96

※単位は defined daily dose (DDD) s per 1,000 inhabitants per day (DID) を使用した。 %DDD は 2023 年 1 月 1 日時点のものを使用した。

② 院内の注射用抗菌薬の使用状況

データ元: J-SIPHE

AMRCRC が運営する J-SIPHE では、入院 EF 統合ファイル*を用いて、参加施設が採用している抗菌薬を対象に使用状況の動向を調査し年報公開している 4 。2021 年の入院患者を対象とした AUD および DOT は、昨年に比して全体的に同様な傾向にあった。ペニシリン系抗菌薬(AUD 3.92、DOT 5.77)の使用が最も多く、次いで第3世代セファロスポリン系(AUD 2.91、DOT 4.02)、第1世代セファロスポリン系(AUD 2.52、DOT 3.40)、カルバペネム系(AUD 1.12、DOT 2.04)が使用されていた。引き続き推移を確認する必要がある。

*E ファイル:診療明細情報、F ファイル:行為明細情報を統合した入院患者を対象としたレセプトファイル

表 80 医療機関における注射用抗菌薬の使用状況(AUD, DOT)

	201	9 年	202	0 年	202	1 年	2022	2 年
	AUD	DOT	AUD	DOT	AUD	DOT	AUD	DOT
	(IQR)							
ペニシリン系	3.90	5.94	3.48	5.19	3.92	5.77	3.86	5.64
	(2.71-5.10)	(4.15-7.82)	(2.15-4.82)	(3.53-7.01)	(2.32-5.32)	(3.7-7.35)	(1.85-5.75)	(3.20-7.99)
第 1 世代	1.71	2.23	2.28	3.11	2.52	3.40	2.21	3.02
セファロスポリン系	(0.83-2.86)	(1.21-3.94)	(1.15-3.27)	(1.58-4.36)	(1.22-3.62)	(1.72-4.73)	(0.79-3.62)	(1.08-4.75)
第 2 世代	0.18	0.37	0.15	0.29	0.14	0.27	0.15	0.31
セファロスポリン系	(0.09-0.41)	(0.19-0.83)	(0.06-0.35)	(0.13-0.69)	(0.06-0.29)	(0.12-0.60)	(0.07-0.32)	(0.14-0.66)
第3世代	3.33	4.58	3.00	4.04	2.91	4.02	2.84	3.91
セファロスポリン系	(2.18-4.74)	(3.05-6.30)	(1.95-4.32)	(2.87-5.60)	(1.90-4.32)	(2.68-5.42)	(1.74-4.17)	(2.52-5.36)
第 4 世代	0.34	0.53	0.31	0.49	0.32	0.55	0.27	0.46
セファロスポリン系	(0.14-0.70)	(0.25-1.01)	(0.14-0.76)	(0.26-1.05)	(0.16-0.74)	(0.28-1.02)	(0.14-0.62)	(0.25-0.97)
	0.30	0.31	0.25	0.27	0.20	0.20	0.22	0.22
オキサセフェム系	(0.11-0.70)	(0.12-0.76)	(0.11-0.61)	(0.11-0.64)	(0.09-0.54)	(0.10-0.55)	(0.10-0.46)	(0.10-0.48)
セファマイシン系	0.89	1.70	0.91	1.67	1.01	1.87	0.94	1.76
	(0.52-1.41)	(0.99-2.62)	(0.47-1.42)	(0.93-2.62)	(0.53-1.52)	(1.04-2.76)	(0.43-1.55)	(0.84-2.78)
β ラクタマーゼ阻害剤配	0.06	0.07	0.09	0.09	0.00	0.00	0.10	0.10
合セファロスポリン	(0.03-0.10)	(0.03-0.11)	(0.06-0.14)	(0.06-0.13)	(0.00-0.00)	(0.00-0.00)	(0.06-0.18)	(0.06-0.14)
カルバペネム系	1.23	2.05	1.09	1.95	1.12	2.04	0.88	1.71
	(0.63-1.79)	(1.15-3.00)	(0.55-1.87)	(1.04-2.90)	(0.56-1.91)	(1.09-3.05)	(0.43-1.71)	(0.89-2.83)
モノバクタム系	0.04	0.07	0.04	0.07	0.05	0.07	0.06	0.07
	(0.02-0.09)	(0.03-0.11)	(0.02-0.09)	(0.04-0.10)	(0.03-0.07)	(0.05-0.11)	(0.03-0.11)	(0.05-0.14)
グリコペプチド系	0.56	0.81	0.48	0.77	0.50	0.77	0.42	0.70
	(0.27-0.94)	(0.46-1.32)	(0.25-0.92)	(0.40-1.30)	(0.26-0.95)	(0.43-1.32)	(0.22-0.79)	(0.38-1.20)
オキサゾリジノン系	0.11	0.11	0.11	0.12	0.12	0.13	0.12	0.13
	(0.07-0.16)	(0.07-0.17)	(0.07-0.18)	(0.08-0.20)	(0.07-0.19)	(0.08-0.21)	(0.07-0.20)	(0.08-0.22)
アルベカシン	0.07 (0.04-0.13)	0.07 (0.04-0.12)	0.08 (0.04-0.14)	0.08 (0.04-0.15)	0.08 (0.04-0.16)	0.08 (0.04-0.16)	-	-
リポペプチド系	0.25	0.17	0.24	0.16	0.26	0.18	0.26	0.18
	(0.14-0.38)	(0.11-0.28)	(0.14-0.39)	(0.11-0.26)	(0.15-0.44)	(0.11-0.30)	(0.15-0.43)	(0.11-0.29)
キノロン系	0.39	0.41	0.37	0.40	0.35	0.38	0.35	0.38
	(0.21-0.61)	(0.23-0.64)	(0.22-0.59)	(0.25-0.63)	(0.22-0.59)	(0.24-0.63)	(0.21-0.59)	(0.23-0.62)
アミノグリコシド系	0.10	0.23	0.10	0.24	0.10	0.25	0.11	0.27
	(0.06-0.18)	(0.14-0.45)	(0.05-0.17)	(0.14-0.43)	(0.05-0.20)	(0.15-0.49)	(0.06-0.21)	(0.15-0.49)
ストレプトマイシン系	-	-	-	-	-	-	0.05 (0.03-0.09)	0.06 (0.03-0.10)
テトラサイクリン系	0.14	0.17	0.15	0.17	0.15	0.17	0.18	0.21
	(0.09-0.26)	(0.10-0.29)	(0.09-0.27)	(0.10-0.33)	(0.09-0.30)	(0.10-0.32)	(0.11-0.34)	(0.12-0.39)
リンコサミド系	0.22	0.32	0.20	0.28	0.19	0.27	0.20	0.28
	(0.13-0.39)	(0.19-0.55)	(0.13-0.33)	(0.18-0.46)	(0.12-0.32)	(0.18-0.43)	(0.12-0.32)	(0.18-0.43)
マクロライド系	0.07	0.07	0.07	0.07	0.07	0.07	0.08	0.08
	(0.04-0.10)	(0.04-0.10)	(0.05-0.11)	(0.05-0.12)	(0.04-0.11)	(0.05-0.11)	(0.05-0.13)	(0.05-0.13)
ST 合剤	0.07	0.06	0.07	0.06	0.08	0.07	0.08	0.07
	(0.03-0.11)	(0.03-0.09)	(0.03-0.14)	(0.03-0.11)	(0.04-0.14)	(0.04-0.11)	(0.05-0.15)	(0.04-0.12)
メトロニダゾール	0.10 (0.07-0.17)	0.11 (0.07-0.18)	0.11 (0.06-0.17)	0.12 (0.07-0.19)	0.12 (0.08-0.18)	0.14 (0.09-0.21)	0.14 (0.09-0.22)	0.15 (0.10-0.24)

AUD: Antimicrobial Use Density、DDDs/100 patient-days にて集計

DOT: Days of Therapy、DOTs/100 patient-days にて集計

※注記:2021年の β -ラクタマーゼ阻害剤配合セファロスポリンは供給停止により使用されていない。

※注記:ベンジルペニシリンベンザチンをペニシリン系として 2022 年 9 月より集計開始

※注記:イミペネム/シラスタチン/レレバクタムをカルバペネム系として 2022 年 9 月より集計開始

※2022 年集計より集計定義変更

・アルベカシン及びスペクチノマイシンをアミノグリコシド系にて集計

・ストレプトマイシンをアミノグリコシド系からストレプトマイシン系にて集計

・系統名変更 セフトロザン/タゾバクタムが β ラクタマーゼ阻害剤配合セファロスポリンへ、ダプトマイシンがリポペプチド系へ、リンコマイシン系がリンコサミド系へ、スルファメトキサゾール/トリメトプリムが ST 合剤へ

引用文献

- 1. European Centre for Disease Prevention and Control An agency of the European Union. "Antimicrobial consumption in the EU Annual Epidemiological Report 2019".
 - https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf
- 2. Koizumi R, Kusama Y, Asai Y, Gu Y, Muraki Y, Ohmagari N. "Effects of the cefazolin shortage on the sales, cost, and appropriate use of other antimicrobials". BMC Health Serv Res. 2021 Oct 19;21(1):1118.
- 3. Ono A, Koizumi R, Tsuzuki S, Asai Y, Ishikane M, Kusama Y, Ohmagari N. Int J Infect Dis. 2022 Jun;119:13-17.
- 4. J-SIPHE 年報 2019, 2020, 2021, 2022

(2)動物用医薬品

データ元:動物由来薬剤耐性菌モニタリング(JVARM)

動物用医薬品等取締規則に基づき報告された抗生物質及び合成抗菌剤の販売量をもとに、動物用抗菌剤の原末換算量(トン: t)を集計した。2013 年から 2021 年における動物用抗菌剤の販売量は 748.44 t から 858.09 t の範囲であった。2021 年は 2020 年より全体の販売量は約 42 t 減少した。減少したのはサルファ剤(約 17 t)及びマクロライド系(約 16 t)であり、サルファ剤では鶏の、マクロライド系では水産動物(海水魚)の減少の影響が大きかった。調査期間を通じて最も販売量が多い系統はテトラサイクリン系であり、全体の 36.1%から 43.7%を占めていたが、近年は 4 割を下回っていた。

一方で、ヒトの医療で重要な第 3 世代セファロスポリン及びフルオロキノロン系抗菌剤の販売量については、それぞれ全体の約 0.1%及び 1.0%であった。

表 81 動物用抗菌剤の系統別原末換算量 (t)

	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年
Penicillins	78.17	77.96	83.73	90.01	88.08	88.99	92.41	96.97	89.02
Cephalosporins(total)	5.58	5.50	5.89	6.45	6.65	7.06	8.02	7.72	8.03
1st generation cephalosporins	(4.71)	(4.58)	(4.98)	(5.41)	(5.50)	(5.67)	(6.62)	(6.40)	(6.61)
2nd generation cephalosporins	(0.19)	(0.20)	(0.12)	(0.16)	(0.18)	(0.22)	(0.14)	(0.15)	(0.13)
3rd generation cephalosporins	(0.68)	(0.71)	(0.79)	(0.88)	(0.96)	(1.18)	(1.26)	(1.16)	(1.28)
Aminoglycosides	39.52	40.64	35.47	47.86	44.76	35.61	35.17	36.89	29.84
Macrolides	77.70	70.43	98.41	134.12	140.83	154.72	180.71	173.72	157.72
Lincosamides	38.99	43.26	28.66	21.87	25.26	22.76	21.29	21.45	22.45
Tetracyclines	340.52	324.85	333.86	331.55	347.05	311.18	313.03	304.38	305.75
Peptides	11.78	9.98	14.54	14.02	19.99	12.34	19.56	19.06	18.40
Other antibioitics	25.98	28.85	32.39	31.96	36.19	37.50	35.96	36.34	37.45
Sulfonamides	103.90	97.57	96.67	95.85	99.06	88.77	84.69	98.53	81.96
Quinolones	1.01	1.91	1.71	1.74	1.84	1.48	2.57	2.34	1.72
Fluoroquinolones	5.53	5.63	7.35	6.08	6.83	6.65	7.53	7.06	8.39
Amphenicols	21.53	26.15	29.73	26.49	27.11	24.82	27.38	25.55	27.02
Furan and derivatives	14.46	1.76	1.24	1.57	1.36	1.34	1.35	1.23	1.55
Other synthetic antibacterials	15.02	13.97	13.35	12.12	13.09	11.98	11.71	11.68	11.57
合計	779.70	748.44	782.98	821.70	858.09	805.19	841.37	842.92	800.87

^{*()}内は、内数。

動物用抗菌剤においては製造販売業者がどの動物種に販売されたかを販売先から推定しており、それに基づいて動物種別販売量を集計している。原末換算量としては豚が最も多く、次いで海水魚であった。2020年より、豚や海水魚での販売量は減少しており、海水魚はワクチンの効果が、家畜での

減少は慎重使用の普及啓発が進んだことや豚熱及び高病原性鳥インフルエンザの発生により飼養衛生 管理が向上したことなどが影響した可能性も考えられた。

動物種別の使用量の比較を行うためには、その動物の頭(羽)数及び1頭(羽)当たりの体重を考慮する必要がある。そのため、動物の体重や数からバイオマス重量(動物総重量)を算出し、バイオマス重量当たりの使用量として表して比較する方法がある。近年 WOAH (OIE) が動物用抗菌剤の使用量データの収集にあたってバイオマス重量の算出法を示し 1 、バイオマス重量あたりの使用量(販売量)データを地域ごとに公表したが、これはすべての家畜をまとめたものであり、種別の比較はできない。そのため、WOAH の算出法に基づき日本の家畜別の使用量の算出について検討する必要がある。

表 82 動物用抗菌剤の動物種別推定原末換算量(t)

	2013 年	2014 年	2015 年	2016年	2017年	2018年	2019 年	2020年	2021年
肉用牛	23.02	20.35	23.77	25.00	25.92	33.17	33.40	58.33	59.27
乳用牛	31.73	30.45	32.48	35.10	34.55	41.01	36.79	48.71	47.97
馬	2.18	2.01	2.10	2.31	2.17	3.90	3.49	3.84	1.84
豚	502.64	490.42	503.13	513.86	541.61	471.36	450.24	421.27	410.52
肉用鶏	65.90	70.14	62.36	63.81	61.74	62.79	69.81	77.53	69.14
採卵鶏	23.29	23.67	19.36	19.78	15.32	15.86	17.56	17.13	9.32
海水魚	112.36	93.41	123.02	143.03	159.07	164.00	217.66	204.15	190.56
淡水魚	6.84	5.61	7.28	10.10	9.07	2.91	2.74	2.27	2.03
鑑賞魚	0.72	1.07	1.60	1.95	1.74	1.63	1.64	1.56	2.14
犬/猫	8.49	8.10	7.78	6.67	6.90	8.56	8.03	8.11	8.08
その他	2.54	3.22	0.09	0.10	0.00	0.00	0.00	0.00	0.00
合計	779.70	748.44	782.96	821.70	858.09	805.19	841.37	842.92	800.87

① 畜産動物

動物用抗菌剤のうち、畜産動物(牛、豚、馬、鶏及びその他)に対する推定販売量(原末換算)を表に示した。2013 年から 2021 年における推定販売量は、598.07 t から 681.31 t の範囲であり、2021 年は 2013 年以降で最も少ない量であった。すべての畜種で 2020 年とほぼ同量または減少した。最も多い抗菌剤はテトラサイクリン系(236.49 t から 286.74 t)であり、畜産動物用の抗菌剤の 38.3% から 44.0%を占めていたが、2021 年は 2013 年以降で最も低い量(236.49 t)となった。これは豚における減少の影響が大きい。一方で、ヒトの医療で重要な第 3 世代セファロスポリン及びフルオロキノロン系についてはそれぞれ畜産動物用の抗菌剤の 0.1%前後及び 1%前後を推移していた。

表 83 畜産動物 (牛、豚、馬、鶏及びその他) に対する推定販売量 (原末換算) (t)

	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年
Penicillins	59.50	61.96	67.25	73.82	71.75	74.48	73.76	76.22	72.44
Cephalosporins (total)	3.12	3.06	3.22	3.34	3.44	3.91	4.11	3.79	4.05
1st generation	(2.45)	(2.34)	(2.52)	(2.52)	(2.51)	(2.73)	(2.93)	(2.68)	(2.85)
2nd generation	(0.19)	(0.20)	(0.12)	(0.16)	(0.18)	(0.22)	(0.14)	(0.15)	(0.13)
3rd generation	(0.49)	(0.51)	(0.58)	(0.65)	(0.74)	(0.96)	(1.04)	(0.95)	(1.07)
Aminoglycosides	37.40	38.66	34.07	47.46	44.37	34.69	34.77	36.52	29.75
Macrolides	56.00	53.30	60.36	72.68	71.96	72.09	73.29	72.71	73.03
Lincosamides	35.88	36.61	23.65	15.62	19.39	16.72	16.26	17.48	19.11
Tetracyclines	286.74	275.83	276.24	280.66	286.01	257.36	242.93	240.12	236.49
Peptides	11.77	9.97	14.54	14.01	19.98	12.34	19.56	19.05	18.39
Other antibioitics	25.71	28.43	32.23	31.55	35.72	36.87	35.64	35.54	37.30
Sulfonamides	95.62	88.43	84.40	78.57	84.10	78.59	68.64	84.38	64.16
Quinolones	0.22	0.20	0.20	0.16	0.31	0.01	0.11	0.18	0.16
Fluoroquinolones	4.64	4.73	6.41	5.19	5.93	5.80	6.66	6.18	7.54
Amphenicols	19.66	25.14	27.39	24.82	25.34	23.28	23.89	23.11	24.23
Furan and derivatives	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other synthetic	14.98	13.92	13.32	12.07	13.02	11.96	11.68	11.53	11.41
合計	651.24	640.25	643.28	659.95	681.31	628.09	611.29	626.83	598.07

^{*()}内は、内数。

② 水産動物

動物用抗菌剤のうち、水産動物(海水魚、淡水魚及び観賞魚)に対する推定販売量(原末換算)を表に示した。2013 年から 2021 年における推定販売量は 119.91 t から 222.05 t の範囲であり、動物用抗菌剤全体の販売量の 13.4%から 26.4%を占めた。販売量が最も多い抗菌剤は、2015 年までテトラサイクリン系であったが、2016 年からはマクロライド系(エリスロマイシン)であった。2013 年から 2021 年への販売量の増加(約75 t)は、マクロライド系(エリスロマイシン)の販売量の増加によるものであり、これは従来の血清型とは異なるレンサ球菌症原因菌による感染症(II型 α 溶血性レンサ球菌症等)の発生及び治療に伴うものと推測された。なお、2021 年におけるマクロライド系(エリスロマイシン)が 84.69 t であり、前年の 101.01 t から 16.32 t 減少した。

なお、ヒトの医療に重要な第3世代セファロスポリン系及びフルオロキノロン系等は、水産用医薬品としては承認されていない。

表 84 水産動物 (海水魚、淡水魚及び観賞魚) に対する推定販売量 (原末換算) (t)

,	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年
Penicillins	16.31	13.87	14.38	14.62	14.66	12.85	17.01	19.21	14.29
Cephalosporins (total)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1st generation cephalosporins	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2nd generation cephalosporins	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3rd generation cephalosporins	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Aminoglycosides	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Macrolides	21.70	17.13	38.05	61.44	68.87	82.61	107.40	101.01	84.69
Lincosamides	3.02	6.56	4.90	6.12	5.73	5.91	4.88	3.82	3.19
Tetracyclines	53.78	49.01	57.62	50.89	61.05	52.55	69.57	63.84	68.84
Peptides	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other antibioitics	0.27	0.42	0.16	0.42	0.47	0.63	0.32	0.80	0.16
Sulfonamides	7.68	8.59	11.71	16.74	14.39	9.64	15.56	13.36	17.53
Quinolones	0.79	1.71	1.51	1.58	1.53	1.47	2.45	2.15	1.56
Fluoroquinolones	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Amphenicols	1.87	1.01	2.33	1.67	1.77	1.53	3.48	2.43	2.78
Furan and derivatives	14.46	1.76	1.24	1.57	1.36	1.34	1.35	1.23	1.55
Other synthetic antibacterials	0.02	0.04	0.02	0.04	0.06	0.02	0.02	0.12	0.13
合計	119.91	100.09	131.91	155.08	169.88	168.54	222.05	207.98	194.72

③ 愛玩動物

動物用抗菌剤のうち、愛玩動物(犬及び猫)向けの推定販売量(原末換算)を表に示した。2013年から2021年における推定販売量は6.67 tから8.56 tの範囲で、2021年は8.08 tであり、2020年とほぼ同量であった。なお、愛玩動物におけるヒト用抗菌剤の販売量については、従来のJVARMでは調査しておらず、2015年までの表の数値には含まれていない。そのため、農林水産省では、一般社団法人全国動物薬品器材協会及び日本医薬品卸売業連合会の全面的な協力の下、2016年からヒト用抗菌剤の使用実態の調査を開始した。調査の結果、動物用抗菌剤よりやや少ない量のヒト用抗菌剤が愛玩動物向けに販売されていることが明らかとなった。ヒト用も含めて最も多く販売されていたのは第1世代セファロスポリン系とペニシリン系薬剤であった。

表 85 愛玩動物 (犬及び猫) 向けの推定販売量 (原末換算) (t)

	2013年 2014年 2015年 2016年		201	7 年	201	8年			
	動物用	動物用	動物用	動物用	ヒト用	動物用	ヒト用	動物用	ヒト用
Penicillins	2.36	2.13	2.08	1.57	1.93	1.68	1.75	1.66	2.14
Cephalosporins(toaall)	2.45	2.44	2.67	3.12	3.23	3.21	2.39	3.16	1.98
1 st generation cephalosporins	(2.26)	(2.23)	(2.46)	(2.89)	(3.08)	(2.99)	(2.27)	(2.93)	(1.86)
2 nd generation cephalosporins	(0.00)	(0.00)	(0.00)	(0.00)	(0.04)	(0.00)	(0.03)	(0.00)	(0.03)
3 rd generation cephalosporins	(0.20)	(0.20)	(0.21)	(0.23)	(0.11)	(0.22)	(0.09)	(0.22)	(0.09)
Aminoglycosides	2.07	1.97	1.40	0.41	0.02	0.39	0.01	0.91	0.01
Macrolides	0.00	0.00	0.00	0.00	0.17	0.00	0.16	0.02	0.17
Lincosamides	0.09	0.09	0.11	0.13	0.10	0.13	0.10	0.14	0.10
Tetracyclines	0.00	0.00	0.00	0.00	0.28	0.00	0.31	1.27	0.33
Peptides	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00
Other antibioitics**	0.00	0.00	0.00	0.00	0.22	0.00	0.21	0.00	0.22
Sulfonamides	0.60	0.55	0.56	0.53	0.19	0.57	0.19	0.53	0.22
Quinolones	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fluoroquinolones	0.90	0.90	0.94	0.89	0.11	0.90	0.11	0.84	0.12
Amphenicols	0.00	0.00	0.00	0.00	0.12	0.01	0.10	0.01	0.11
Furan and derivatives	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other synthetic antibacterials***	0.02	0.01	0.01	0.01	0.08	0.01	0.10	0.01	0.10
合計	8.49	8.10	7.78	6.67	6.48	6.90	5.43	8.56	5.51

	201	9年	202	0 年	202	1年
	動物用	ヒト用	動物用	ヒト用	動物用	ヒト用
Penicillins	1.64	1.98	1.54	1.56	2.29	1.88
Cephalosporins(toaall)	3.91	2.04	3.93	1.62	3.97	1.50
1 st generation cephalosporins	(3.69)	(1.90)	(3.72)	(1.49)	(3.76)	(1.39)
2 nd generation cephalosporins	(0.00)	(0.03)	(0.00)	(0.03)	(0.00)	(0.03)
3 rd generation cephalosporins	(0.22)	(0.11)	(0.21)	(0.10)	(0.21)	(80.0)
Aminoglycosides	0.40	0.02	0.37	0.02	0.09	0.01
Macrolides	0.02	0.18	0.00	0.18	0.00	0.15
Lincosamides	0.15	0.09	0.15	0.08	0.15	0.07
Tetracyclines	0.53	0.35	0.42	0.34	0.42	0.31
Peptides	0.01	0.00	0.01	0.00	0.01	0.00
Other antibioitics**	0.00	0.22	0.00	0.23	0.00	0.18
Sulfonamides	0.50	0.25	0.78	0.25	0.26	0.25
Quinolones	0.00	0.00	0.00	0.00	0.00	0.00
Fluoroquinolones	0.87	0.16	0.88	0.11	0.85	0.08
Amphenicols	0.01	0.12	0.01	0.11	0.01	0.09
Furan and derivatives	0.00	0.00	0.00	0.00	0.00	0.00
Other synthetic antibacterials***	0.00	0.13	0.02	0.11	0.02	0.09
合計	8.03	5.53	8.11	4.60	8.08	4.61

^{*()} 内は、内数

引用文献

1. Gochez D., Raicek M., Ferreira J. P., Jeannin M., Moulin G., Erlacher-Vindel E. OIE annual report on antimicrobial agents intended for use in animals: methods used. Frontiers in Vet. Sci. 2019. 6. doi: 10.3389/fvets.2019.00317

^{**}ホスホマイシン系及びリファマイシン系等を含む(バンコマイシンは 2016 年ヒト用 0.0006 t、2017 年ヒト用 0.0005 t、2018 年ヒト用 0.0006 t、2020 年ヒト用 0.0006 t、2021 年ヒト用 0.0006 t)

^{***}トリメトプリム、ペネム系及びカルバペネム系等を含む(カルバペネム系は 2016 年ヒト用 0.0066 t、2017 年ヒト用 0.0057 t、2018 年ヒト用 0.0062 t、2020 年ヒト用 0.0083 t、2021 年ヒト用 0.0070 t)

(3) 抗菌性飼料添加物

データ元:独立行政法人農林水産消費安全技術センター(FAMIC)及び一般社団法人日本科学飼料協会

独立行政法人農林水産消費安全技術センター及び一般社団法人日本科学飼料協会の調査による抗菌性飼料添加物の流通量を表に示した。2020年から2021年における流通量は234.9 tから211.1 tとやや減少傾向であったが、特にポリエーテル系が約23 t減少した。なお、ポリペプチド系のコリスチンは2018年7月に、マクロライド系のタイロシンは2019年5月に、テトラサイクリン系2物質は2019年12月にそれぞれ飼料添加物としての指定を取消したことから、これらについて取消以降は流通していない。

表 86 抗菌性飼料添加物の流通量(実効力価換算量) (t)

	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2021年
Aminoglycosides	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Polypeptides	35.0	28.3	29.6	32.1	15.2	9.4	6.4	7.1	10.4
Tetracyclines	1.6	2.2	2.6	2.0	0.0	0.0	0.0	0.0	0.0
Macrolides	5.6	5.3	5.5	1.4	3.5	0.0	0.0	0.0	0.0
Polysaccharides	0.2	0.0	0.1	0.1	0.1	0.0	2.3	3.4	1.4
Polyethers	136.0	142.5	141.7	159.9	165.5	161.0	174.1	192.5	169.7
Other antimicrobials	20.8	18.3	12.5	14.6	19.8	26.2	17.6	11.9	12.5
Synthetic antimicrobials	35.9	29.3	24.4	18.1	17.1	20.1	25.1	20.0	17.1
合計	235.1	225.9	216.4	228.2	221.2	216.7	225.5	234.9	211.1

(4)農薬

データ元:農林水産省消費・安全局農産安全管理課

農薬として用いられている抗菌剤の国内出荷量(有効成分換算(トン: t))を表に示した。 2013年から2021年における国内出荷量の合計は133.24tから181.43tと150t前後であった。

表 87 農薬として用いられている抗菌剤の国内出荷量(有効成分換算)(t)

	2013 年	2014 年	2015 年	2016年	2017年	2018年	2019年	2020年	2021年
Streptomycin	45.19	45.30	44.41	49.80	56.04	36.19	35.90	37.52	36.78
Oxytetracycline	19.49	22.23	23.25	19.46	17.81	0.13	0.16	0.35	0.91
Kasugamycin	23.43	23.92	23.69	23.68	23.90	21.22	19.79	18.41	18.35
Validamycin	23.11	25.50	24.97	24.80	24.71	23.35	23.85	24.78	23.67
Oxolinic acid	40.08	40.79	41.16	42.17	44.38	44.53	43.29	41.33	41.85
Polyoxins	16.24	15.49	15.25	15.80	14.59	13.65	13.23	13.52	11.67
合計	167.54	173.24	172.73	175.71	181.43	139.07	136.22	135.90	133.24

集計は農薬年度 (2013 農薬年度は 2012 年 10 月から 2013 年 9 月) 集計に抗真菌薬を含まない。

(5)日本における抗菌薬使用の現状

ヒト、畜産動物、水産動物、愛玩動物、抗菌性飼料添加物および農薬の使用量(又は販売量)を合算した値を表 88 に示す。ワンヘルスとして考えた場合における日本の抗菌薬の選択圧は、2013 年と比較し 4 %程度減少している。テトラサイクリン系が $18\sim21\%$ と最も高く、次いでペニシリン系($13\sim17\%$)、マクロライド系($11\sim15\%$)であった。またペニシリン系およびマクロライド系いずれも経年的に増加しており今後の動向に注意が必要である。一方、セファロスポリン系、フルオロキノロン系においてはあまり変動を認めず、ヒトとヒト以外で使用可能な抗菌薬が異なることが影響していると考えられる。

表 88 日本における抗菌薬使用量(又は販売量)(t) の現状

24			- ,,						
	2013年	2014年	2015 年	2016年	2017年	2018年	2019年	2020年	2021 年
Penicillins	222.0	229.1	249.2	262.8	268.5	279.9	302.8	265.5	267.3
Cephalosporins	168.2	163.7	166.5	165.3	160.4	156.7	154.9	131.2	130.4
Monobactams	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Carbapenems	9.9	9.9	10.1	10.2	10.1	9.8	10.0	8.8	9.1
Aminoglycosides	97.2	98.8	93.1	109.1	104.1	93.7	91.6	93.3	85.5
Macrolides	191.3	177.1	207.4	238.4	238.9	244.4	267.9	241.5	221.1
Lincosamides	41.8	46.0	31.3	24.3	27.6	25.1	24.1	23.6	24.6
Tetracyclines	359.7	345.9	356.0	351.3	363.7	318.7	320.9	313.1	315.3
Peptides and	49.0	40.4	46.4	48.5	37.7	24.1	28.6	28.7	31.2
Sulfonamides*	149.7	147.5	150.4	154.4	161.2	154.4	155.7	174.3	163.2
Fluoroquinolones	66.8	65.8	63.9	63.5	60.0	56.7	55.3	40.1	37.6
Other quinolones	41.6	43.1	43.2	44.3	46.0	46.1	46.0	43.8	43.7
Amphenicols,	21.8	26.2	29.8	26.6	27.2	24.9	27.5	25.6	27.1
Furan and derivatives	14.5	1.8	1.2	1.6	1.4	1.3	1.4	1.2	1.6
Polysaccharides	0.2	0.0	0.1	0.1	0.1	0.0	2.3	3.4	1.4
Polyethers	136.0	142.5	141.7	159.9	165.5	161.0	174.1	192.5	169.7
Polyoxins	16.2	15.5	15.3	15.8	8.6	13.7	13.2	13.5	11.7
Others*	138.4	132.6	124.6	118.6	122.8	133.3	127.4	115.2	111.9
合計	1724.3	1685.9	1730.2	1795.0	1803.7	1743.9	1803.4	1715.5	1652.5

^{*}飼料添加物の sulfonamides 及び農薬の validamycin は others に含まれる。集計に抗真菌薬を含まない。

表 89 日本における抗菌薬使用量(又は販売量)(t)の経年的推移 (1/3)

		2013 年					2014 年						2015 年					
	۲ŀ	畜産動物	水産動物	愛玩 動物	抗菌性 飼料 添加物	農薬	۲ <i>۲</i>	畜産動物	水産動物	愛玩 動物	抗菌性 飼料 添加物	農薬	۲ŀ	畜産動物	水産動物	愛玩 動物	抗菌性 飼料 添加物	農薬
Penicillins	143.8	59.5	16.3	2.4	0.0	0.0	151.1	62.0	13.9	2.1	0.0	0.0	165.3	67.3	14.4	2.1	0.0	0.0
Cephalosporins	162.7	3.1	0.0	2.5	0.0	0.0	158.2	3.1	0.0	2.4	0.0	0.0	160.6	3.2	0.0	2.7	0.0	0.0
Monobactams	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Carbapenems	9.9	0.0	0.0	0.0	0.0	0.0	9.9	0.0	0.0	0.0	0.0	0.0	10.1	0.0	0.0	0.0	0.0	0.0
Aminoglycosides	1.0	37.4	0.0	2.1	0.0	56.7	0.9	38.7	0.0	2.0	0.0	57.2	0.9	34.1	0.0	1.4	0.0	56.7
Macrolides	108.0	56.0	21.7	0.0	5.6	0.0	101.4	53.3	17.1	0.0	5.3	0.0	103.4	60.4	38.1	0.0	5.5	0.0
Lincosamides	2.8	35.9	3.0	0.1	0.0	0.0	2.7	36.6	6.6	0.1	0.0	0.0	2.6	23.7	4.9	0.1	0.0	0.0
Tetracyclines	7.1	286.7	53.8	0.0	1.6	10.5	6.9	275.8	49.0	0.0	2.2	12.0	7.1	276.2	57.6	0.0	2.6	12.5
Peptides and glycopeptides	2.2	11.8	0.0	0.0	35.0	0.0	2.1	10.0	0.0	0.0	28.3	0.0	2.3	14.5	0.0	0.0	29.6	0.0
Sulfonamides	45.8	95.6	7.7	0.6	0.0	0.0	49.9	88.4	8.6	0.6	0.0	0.0	53.7	84.4	11.7	0.6	0.0	0.0
Fluoroquinolones	61.3	4.6	0.0	0.9	0.0	0.0	60.2	4.7	0.0	0.9	0.0	0.0	56.6	6.4	0.0	0.9	0.0	0.0
Other quinolones	0.5	0.2	0.8	0.0	0.0	40.1	0.4	0.2	1.7	0.0	0.0	40.8	0.3	0.2	1.5	0.0	0.0	41.2
Amphenicols, thiamphenicols and derivatives	0.2	19.7	1.9	0.0	0.0	0.0	0.1	25.1	1.0	0.0	0.0	0.0	0.1	27.4	2.3	0.0	0.0	0.0
Furan and derivatives	0.0	0.0	14.5	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0
Polysaccharides	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
Polyethers	0.0	0.0	0.0	0.0	136.0	0.0	0.0	0.0	0.0	0.0	142.5	0.0	0.0	0.0	0.0	0.0	141.7	0.0
Polyoxins	0.0	0.0	0.0	0.0	0.0	16.2	0.0	0.0	0.0	0.0	0.0	15.5	0.0	0.0	0.0	0.0	0.0	15.3
Others*	17.6	40.7	0.3	0.0	56.7	23.1	16.6	42.4	0.5	0.0	47.6	25.5	16.9	45.6	0.2	0.0	36.9	25.0
승計	563.0	651.2	119.9	8.5	235.1	146.6	560.6	640.2	100.1	8.1	225.9	151.0	580.1	643.3	131.9	7.8	216.4	150.7
年合計		1724.5				1724.5	1686.0				1730.2							

表 89 日本における抗菌薬使用量(又は販売量)(t)の経年的推移 (2/3)

							±19 (2/3)						2018 年					
			201	b 牛	11.46.17			1	2017 🕏	-	1 11 44.15				2018	牛		
	ヒト	畜産 動物	水産動物	愛玩 動物	抗菌性 飼料 添加物	農薬	ヒト	畜産 動物	水産動物	愛玩 動物	抗菌性 飼料 添加物	農薬	ヒト	畜産 動物	水産 動物	愛玩 動物	抗菌性 飼料 添加物	農薬
Penicillins	172.8	73.8	14.6	1.6	0.0	0.0	180.2	71.7	14.7	1.7	0.0	0.0	190.9	74.5	12.9	1.7	0.0	0.0
Cephalosporins	159.1	3.3	0.0	3.1	0.0	0.0	153.8	3.4	0.0	3.2	0.0	0.0	149.5	3.9	0.0	3.2	0.0	0.0
Monobactams	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Carbapenems	10.2	0.0	0.0	0.0	0.0	0.0	10.1	0.0	0.0	0.0	0.0	0.0	9.8	0.0	0.0	0.0	0.0	0.0
Aminoglycosides	0.8	47.5	0.0	0.4	0.0	60.4	0.8	44.4	0.0	0.4	0.0	58.5	0.7	34.7	0.0	0.9	0.0	57.4
Macrolides	102.9	72.7	61.4	0.0	1.4	0.0	94.5	72.0	68.9	0.0	3.5	0.0	89.7	72.1	82.6	0.0	0.0	0.0
Lincosamides	2.5	15.6	6.1	0.1	0.0	0.0	2.4	19.4	5.7	0.1	0.0	0.0	2.4	16.7	5.9	0.1	0.0	0.0
Tetracyclines	7.2	280.7	50.9	0.0	2.0	10.5	7.0	286.0	61.1	0.0	0.0	9.6	7.3	257.4	52.6	1.3	0.0	0.1
Peptides and glycopeptides	2.4	14.0	0.0	0.0	32.1	0.0	2.5	20.0	0.0	0.0	15.2	0.0	2.4	12.3	0.0	0.0	9.4	0.0
Sulfonamides	58.6	78.6	16.7	0.5	0.0	0.0	62.1	84.1	14.4	0.6	0.0	0.0	65.7	78.6	9.6	0.5	0.0	0.0
Fluoroquinolones	57.4	5.2	0.0	0.9	0.0	0.0	53.2	5.9	0.0	0.9	0.0	0.0	50.1	5.8	0.0	0.8	0.0	0.0
Other quinolones	0.3	0.2	1.6	0.0	0.0	42.2	0.2	0.3	1.5	0.0	0.0	44.0	0.1	0.0	1.5	0.0	0.0	44.5
Amphenicols, thiamphenicols and derivatives	0.1	24.8	1.7	0.0	0.0	0.0	0.1	25.3	1.8	0.0	0.0	0.0	0.1	23.3	1.5	0.0	0.0	0.0
Furan and derivatives	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0
Polysaccharides	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Polyethers	0.0	0.0	0.0	0.0	159.9	0.0	0.0	0.0	0.0	0.0	165.5	0.0	0.0	0.0	0.0	0.0	161.0	0.0
Polyoxins	0.0	0.0	0.0	0.0	0.0	15.8	0.0	0.0	0.0	0.0	0.0	8.6	0.0	0.0	0.0	0.0	0.0	13.7
Others*	17.0	43.6	0.5	0.0	32.7	24.8	14.6	48.7	0.5	0.0	36.9	22.1	14.1	48.8	0.7	0.0	46.3	23.4
合計	591.4	659.9	155.1	6.7	228.2	153.6	581.6	681.3	169.9	6.9	221.2	142.7	582.9	628.1	168.5	8.6	216.7	139.1
年合計						1795.0						1803.7						1743.9

表89 日本における抗菌薬使用量(又は販売量)(t)の経年的推移(3/3)

		2019 年					2020 年					2021年						
	۲ŀ	畜産 動物	水産動物	愛玩 動物	抗菌性 飼料 添加物	農薬	ヒト	畜産 動物	水産動物	愛玩 動物	抗菌性 飼料 添加物	農薬	ヒト	畜産 動物	水産動物	愛玩 動物	抗菌性 飼料 添加物	農薬
Penicillins	210.4	73.8	17.0	1.6	0.0	0.0	168.6	76.2	19.2	1.5	0.0	0.0	178.3	72.4	14.3	2.3	0.0	0.0
Cephalosporins	146.9	4.1	0.0	3.9	0.0	0.0	123.5	3.8	0.0	3.9	0.0	0.0	122.3	4.1	0.0	4.0	0.0	0.0
Monobactams	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Carbapenems	10.0	0.0	0.0	0.0	0.0	0.0	8.8	0.0	0.0	0.0	0.0	0.0	9.1	0.0	0.0	0.0	0.0	0.0
Aminoglycosides	0.7	34.8	0.0	0.4	0.0	55.7	0.5	36.5	0.0	0.4	0.0	55.9	0.5	29.8	0.0	0.1	0.0	55.1
Macrolides	87.2	73.3	107.4	0.0	0.0	0.0	67.8	72.7	101.0	0.0	0.0	0.0	63.4	73.0	84.7	0.0	0.0	0.0
Lincosamides	2.7	16.3	4.9	0.2	0.0	0.0	2.1	17.5	3.8	0.2	0.0	0.0	2.1	19.1	3.2	0.2	0.0	0.0
Tetracyclines	7.7	242.9	69.6	0.5	0.0	0.2	8.4	240.1	63.8	0.4	0.0	0.4	8.7	236.5	68.8	0.4	0.0	0.9
Peptides and glycopeptides	2.6	19.6	0.0	0.0	6.4	0.0	2.7	19.0	0.0	0.0	7.0	0.0	2.4	18.4	0.0	0.0	10.4	0.0
Sulfonamides	71.0	68.6	15.6	0.5	0.0	0.0	75.7	84.4	13.4	0.8	0.0	0.0	81.2	64.2	17.5	0.3	0.0	0.0
Fluoroquinolones	47.7	6.7	0.0	0.9	0.0	0.0	33.0	6.2	0.0	0.9	0.0	0.0	29.2	7.5	0.0	0.9	0.0	0.0
Other quinolones	0.1	0.1	2.5	0.0	0.0	43.3	0.1	0.2	2.2	0.0	0.0	41.3	0.0	0.2	1.6	0.0	0.0	41.9
Amphenicols, thiamphenicols and derivatives	0.1	23.9	3.5	0.0	0.0	0.0	0.1	23.1	2.4	0.0	0.0	0.0	0.1	24.2	2.8	0.0	0.0	0.0
Furan and derivatives	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	0.0
Polysaccharides	0.0	0.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	3.4	0.0	0.0	0.0	0.0	0.0	1.4	0.0
Polyethers	0.0	0.0	0.0	0.0	174.1	0.0	0.0	0.0	0.0	0.0	192.5	0.0	0.0	0.0	0.0	0.0	169.7	0.0
Polyoxins	0.0	0.0	0.0	0.0	0.0	13.2	0.0	0.0	0.0	0.0	0.0	13.5	0.0	0.0	0.0	0.0	0.0	11.7
Others*	13.3	47.3	0.3	0.0	42.7	23.8	10.5	47.1	0.9	0.0	31.9	24.8	9.6	48.7	0.3	0.0	29.6	23.7
合計	600.2	611.4	222.1	8.0	225.5	136.2	501.9	626.8	208.0	8.1	234.8	135.9	507.0	598.1	194.7	8.1	211.1	133.2
年合計			•		•	1803.8			•			1715.4		•	•	•	1652.2	

^{*}飼料添加物の sulfonamides 及び農薬の validamycin は others に含まれる。動物用医薬品の Antifungal antibiotics は others に含まない。集計に抗真菌薬を含まない

(6) 抗菌薬適正使用についての研究

国内の抗菌薬適正使用に関わる研究について、過去の報告と昨年度の本報告書以後に(2022 年後半~)公表されたものを以下にまとめた。診療請求情報(レセプトデータ)を用いた日本全国の外来を対象とした研究のみを対象とし、対象地域が限定されている研究や、抗菌薬使用量だけが解析されている研究は除外した。

レセプトデータは、厚生労働省が構築した NDB^{2,3}、国民健康保険のデータベース 4 、複数の健康保険組合のレセプト情報を組み合わせて構築された製品化されたデータベース(JMDC 社の JMDC データベース $^{1,5-7}$ 、IQVIA 社のデータベース 8 や MDV 社の MDV analyzer 11)などが利用されていた。なお、記載中の角括弧([])で囲まれている数字は特に記載のない場合、95%信頼区間を表す。

1. 抗菌薬適正使用に関する過去の報告

これまでに抗微生物薬適正使用の手引きで取り上げられている、急性気道感染症や急性下痢症への 抗菌薬適正使用に関する研究が報告されてきた¹⁻⁷。抗菌薬使用量は徐々に減少してきているが、なお、 急性気道感染症や急性下痢症への処方が多く適正使用支援の介入の余地があると示唆されていた。そ の中で 2018 年、3 歳未満の小児に対し、小児抗菌薬適正使用加算が導入され、さらに 2020 年の改定 で対象年齢が 6 歳未満へ引き上げられた。村木らが、IQVIA 社のデータベースを用いて 15 歳未満の 児を対象に、2018年の本加算の効果について検証を行ったが、加算を申請している施設ではしてい ない施設と比べ抗菌薬の処方割合がより低かった 8。こうした結果が出ているが、加算年齢の拡大も 行われており、研究対象期間や年齢の拡大、より詳細な年齢別導入有無での抗菌薬適正使用への効果 などの調査も今後の抗菌薬適正使用を進めるために検討がのぞまれる。小児に関しては小児科診療所 を対象にしたアクションプランの効果を調査した研究が新たに報告されており、次項に記す。急性 下痢症に関しては、これまでには、大久保らが小児(18 歳未満)について、JMDC 社のデータベー スを用い、2012 年 4 月~2015 年 12 月にかけて抗菌薬の使用状況を示した ⁷。4.493 名の急性下痢症 に罹患した外来患者に関するレセプトが調査され、そのうち 29.6%が何らかの抗菌薬処方を受け、抗 菌薬種別ではホスホマイシンが最も多かった(20.3%)。成人について大野らは JMDC 社のデータベ ースを用い、2013 年 1 月〜2018 年 12 月にかけて 0〜65 歳の急性下痢症に対する抗菌薬使用状況を 調査した ¹⁰。研究期間の 6 年間において、全対象者の 94.6%が非細菌性の下痢症であったが、抗菌薬 処方率(処方数/受診数)は成人男性で 46.5%、成人女性で 40.8%であった。小児(0~17 歳)への抗 菌薬処方率は、男児 30.5%と女児 30.4%であり、過去の大久保らの調査⁷と大差なかった。また、椙 山らも急性下痢症に対する経口抗菌薬処方の状況についてについて診療データベースを利用した分析 ツール(MDV analyzer:メディカル・データ・ビジョン(株)、東京)を用いて調査した ¹¹。2013 年 1 月~2019 年 12 月にかけて MDV analyzer に登録されている日本全国の診断群分類別包括支払制 度病院を対象に調査され、経年的に処方患者数が減少していたことが大野らと同様に示された。

[小児抗菌薬適正使用加算導入の影響に関する研究]

神代らは JMDC 社のデータベースを用いて、2013 年 4 月から 2020 年 2 月の情報から 2018 年 4 月に導入された呼吸器感染症、下痢症に対して抗菌薬を処方しなかった場合にインセンティブがつく加算 (0-2 歳) と医療提供者の教育(6 歳以上)の影響について中断時系列分析を用いて効果を評価した 12 。その結果、加算導入後に抗菌薬処方が大幅に減少したのは 0-2 歳(毎月 1,000 回の診療所あたり $^{-47.5}$ 処方 $[77.3 \sim ^{-17.6}]$)であった。医療提供者に対する教育は全年齢で抗菌薬処方を減少させていた。これらは導入後即時に効果が見られたものの、長期間の効果は見られなかった。

大久保らは NDB を用いて同様の加算の効果を差分の差分分析を用いて評価を行い 13 、抗菌薬処方の減少を示した(DID 推定、1,000 症例あたり -228.6 DOT [95%信頼区間 $-272.4 \sim -184.9])。$

また、呼吸器症状の治療薬 (DID 推定、1,000 症例あたり -256.9 DOT [-379.3 \sim -134.5]) 、抗 ヒスタミン薬 (DID 推定、1,000 症例あたり -198.5 DOT [-282.1 \sim -114.9])であり、時間外診療の 増加も見られなかった [DID 推定、1,000 件あたり -4.43 件 [-12.8 \sim 3.97]。また入院増加は見られな かった [DID 推定値、1,000 例あたり -0.08 件 [-0.48 \sim 0.31] 。医療に悪影響を与えることなく、不要な抗菌薬処方の削減につながったとことを示した。

[処方状況に関する研究]

佐藤らは JMDC を用いて、2015 年 9 月から 2018 年 8 月の期間で 18 歳以上を対象として、抜歯後の予防抗菌薬の処方状況を分析し、AMR 対策アクションプランの影響を調査した 14 。その結果、66,2435 人の該当患者のうち、予防抗菌薬の処方があった患者は全体で 83%、術後感染症のリスクが低いと定義した患者の 82%であった。研究期間内でこの割合に変化は見られなかったものの、処方内訳は第 3 世代セファロスポリンが 58%から 34%(病院)、57%から 56%(診療所)へ減少が見られた。またアモキシシリンは 16%から 37%(病院)、6%から 10%(診療所)へ増加していた。

また荒木らは、JMDC を用いて 2005 年 1 月から 2016 年 2 月の期間で 5 年以上健康診断を受け、 2 回以上感冒と診断された労働年齢人口 18,659 人を対象として調査を行った 15 。その結果、49.2%(9,180 人)に抗菌薬が処方されており、その要因として慢性疾患がないこと、男性患者、診療所もしくは 20 床以下の病院ということが明らかとなった。また $40\sim45\%$ がセファロスポリンの処方を受けていた。解釈においては、労働年齢人口が対象であることに留意が必要である。

不適切処方の状況が明らかとなり、中でもセファロスポリン系の使用が多く、ASP を進める必要性を示す結果であった。

2. 抗菌薬適正使用に関する新たな研究報告

都築らは抗菌薬使用量が 2015 年から 2021 年まで経時的に減少し続けているにも関わらず、耐性菌による菌血症の疾病負荷には同期間で明らかな減少が見られなかったことを指摘した。なぜこのような現象が見られたかについては複数の仮説が考えられるが、ただ抗菌薬の使用量を減少させるだけでは有効な AMR 対策としては不十分である可能性を示唆している 16 。

室らは NDB を用いて、2016 年 4 月から 2017 年 3 月の間に入院した市中肺炎患者において血液培養の有用性と、死亡率、入院期間、および抗菌薬の使用に対する血液培養の影響を調べた。傾向スコアマッチングにより血液培養実施群と対照群を比較した結果、血液培養実施群は対照群に比べて死亡率および在院日数が有意に低く、また抗菌薬使用が優位に高いことを示し、市中肺炎における血液培養実施が適正使用に関連することを示した 17。

井出らは JMDC を用いて、2013 年から 2018 年の経口マクロライド系抗菌薬の処方状況を調査した。マクロライドは経口抗菌薬の 30%を占め、このうち 60%をクラリスロマイシンが占めていた。多くが風邪に対する処方であり、アレルギー疾患や皮膚疾患といった慢性疾患も一部含まれていた。風邪に対するマクロライドの使用の見直しと、皮膚やアレルギー疾患に対する長期使用の適切な評価の必要性を示唆している ¹⁸。

後藤らは MDV を用いて、2010 年から 2019 年までのバンコマイシン投与患者について TDM 実施群と対象群について有効性と安全性に対する要因を調査した。薬剤管理料は 30 日死亡率の減少に寄与

した一方、感染チームの配置は影響しなかった事から、個々の患者に対する薬学的管理の必要性が示唆された 19 。

3. 抗菌薬適正使用に関する新たなデータ収集解析手法の取り組み

NDB 情報を用いた気道感染症に対する抗菌薬使用割合を集計する仕組みを作成している。特定のレセプト傷病名に対する抗菌薬の処方割合の検討を行っている。地域別、年代別、抗菌薬種類別といった観点でのモニタリングを予定している。

- 1. Yoshida S, Takeuchi M, Kawakami K. Prescription of antibiotics to pre-school children from 2005 to 2014 in Japan: a retrospective claims database study. J Public Health (Oxf) . 2018;40: 397–403.
- 2. Uda K, Okubo Y, Kinoshita N, Morisaki N, Kasai M, Horikoshi Y, et al. Nationwide survey of indications for oral antimicrobial prescription for pediatric patients from 2013 to 2016 in Japan. J Infect Chemother. 2019;25: 758–63.
- 3. Hashimoto H, Saito M, Sato J, Goda K, Mitsutake N, Kitsuregawa M, et al. Indications and classes of outpatient antibiotic prescriptions in Japan: A descriptive study using the national database of electronic health insurance claims, 2012-2015. Int J Infect Dis. 2020;91: 1–8.
- 4. Hashimoto H, Matsui H, Sasabuchi Y, Yasunaga H, Kotani K, Nagai R, et al. Antibiotic prescription among outpatients in a prefecture of Japan, 2012–2013: a retrospective claims database study. BMJ Open. 2019;9: e026251.
- 5. Kimura Y, Fukuda H, Hayakawa K, Ide S, Ota M, Saito S, et al. Longitudinal trends of and factors associated with inappropriate antibiotic prescribing for non-bacterial acute respiratory tract infection in Japan: A retrospective claims database study, 2012-2017. PLoS One. 2019;14: e0223835.
- 6. Koyama T, Hagiya H, Teratani Y, Tatebe Y, Ohshima A, Adachi M, et al. Antibiotic prescriptions for Japanese outpatients with acute respiratory tract infections (2013-2015): A retrospective Observational Study. J Infect Chemother. 2020;26: 660–6.
- 7. Okubo Y, Miyairi I, Michihata N, Morisaki N, Kinoshita N, Urayama KY, et al. Recent Prescription Patterns for Children with Acute Infectious Diarrhea. J Pediatr Gastroenterol Nutr. 2019;68: 13–6.
- 8. Muraki Y, Kusama Y, Tanabe M, Hayakawa K, Gu Y, Ishikane M, et al. Impact of antimicrobial stewardship fee on prescribing for Japanese pediatric patients with upper respiratory infections. BMC Health Serv Res. 2020;20 (1):
- Okubo, Y., Nariai, H., Michels, K. B., Kim-Farley, R. J., Nishi, A., Arah, O. A., Kinoshita, N., Uda, K., & Miyairi, I.
 (2021) . Change in clinical practice variations for antibiotic prescriptions across different pediatric clinics: A Japan's nationwide observational study. Journal of Infection and Chemotherapy.
 https://doi.org/10.1016/j.jiac.2021.07.020
- Ono, A., Aoyagi, K., Muraki, Y. et al. Trends in healthcare visits and antimicrobial prescriptions for acute infectious diarrhea in individuals aged 65 years or younger in Japan from 2013 to 2018 based on administrative claims database: a retrospective observational study. BMC Infect Dis 21, 983 (2021) . https://doi.org/10.1186/s12879-021-06688-2
- 11. 椙山聡一郎,清水博之,築地淳,橋本真也:外来における急性気道感染症および急性下痢症に対する経口抗菌 薬の処方 状況について〜MDV analyzer を用いた診療データに基づく現状調査〜,日本病院薬剤師会雑誌,56 (10),1187-1194,2020.
- 12. Jindai K, Itaya T,Ogawa Y, Kamitani T, Fukuhara S, Goto M, Yamamoto Y. Decline in oral antimicrobial prescription in the outpatient setting after nationwide implementation of financial incentives and provider education: An interrupted time-series analysis. Infect Control Hosp Epidemiol. 2022 Apr 6; 1-7.
- 13. Okubo Y, Nishi A, Michels K B, Nariai H, Kim-Farley R J, Arah O A, Uda K, Kinoshita, Miyairi I. The consequence of financial incentives for not prescribing antibiotics: a Japan's nationwide quasi-experiment. Int J Epidemiol. 2022 Oct 13; 51(5).
- 14. Sato M, Yamana H, Ono S, Ishimaru M, Matsui H, Yasunaga H. Trends in prophylactic antibiotic use for tooth extraction from 2015 to 2018 in Japan: An analysis using a health insurance claims database. J Infect Chemother. 2022 Apr;28(4): 504-509.

- 15. Araki Y, Momo K, Yasu T, Ono K, Uchikura T, Koinuma M, Sasaki T. Prescription pattern analysis for antibiotics in working-age workers diagnosed with common cold. Sci Rep. 2021 Nov 22;11(1): 22701
- 16. Tsuzuki S, Koizumi R, Matsunaga N, Ohmagari N. Decline in Antimicrobial Consumption and Stagnation in Reducing Disease Burden due to Antimicrobial Resistance in Japan. Infect Dis Ther. 2023. DOI: 10.1007/s40121-023-00829-7.
- 17. Muro T, Ando F, Suehiro M, Nakagawa H, Okuda C, Matsumoto T, Izumikawa K, Honda M, Sasaki H. Utility of Blood Culture in Patients with Community-Acquired Pneumonia: A Propensity Score-Matched Analysis Based on a Japanese National Health Insurance Database. Biological and Pharmaceutical Bulletin 2023; 46.
- 18. Ide S, Ishikane M, Aoyagi K, Ono A, Asai Y, Tsuzuki S, Kusama Y, Gu Y, Kodama E, Ohmagari N. Investigation of oral macrolide prescriptions in Japan using a retrospective claims database, 2013-2018. PLoS One 2023 Jun 22; 18(6).
- 19. Goto R, Muraki Y, Inose R, Kusama Y, Ono A, Koizumi R, Ishikane M, Ohmagari N. Influence of pharmacists and infection control teams or antimicrobial stewardship teams on the safety and efficacy of vancomycin: A Japanese administrative claims database study. PLoS One. 2022 Sep 9; 17(9).

(7)動物用抗菌剤の慎重使用についての研究

新たなアクションプランが公表され、動物(畜産)分野の抗菌剤の削減目標が設定された。動物用 抗菌剤が使用される疾病に関する情報を蓄積しながら、主要な疾病の予防・治療指針を整備していく 必要がある。また、愛玩動物は家庭内で同居家族と生活空間を共有するため、薬剤耐性菌が家庭内で 相互伝播する可能性が指摘されているため、抗菌剤の使用実態の把握は極めて重要である。動物用抗 菌剤の慎重使用に関する調査について、対象地域が限定されている研究ではあるが以下に示す。

1. 農業共済組合の電子カルテデータの活用

寺師らは NOSAI 岐阜が管理する電子カルテデータを用いて、牛の治療に使われた抗菌剤の治療目的と純末換算量を集計した 1 。抗菌剤は消化器疾患(50.4%)と呼吸器疾患(34.4%)で 主に使用され(85%)、コクシジウム症を対象にサルファ剤(49.2%)と呼吸器疾患を対象にフロルフェニコールを中心としたフェニコール剤(21.7%)が主要な成分であった。農林水産省の全国データでは、牛においてもテトラサイクリン系抗生物質の使用が多いとされているが、抗菌剤の使用状況には地域性があることが示唆された。

2. 愛玩動物における第2次選択薬の使用状況

村上らは岐阜県獣医師会の協力のもと、愛玩動物病院 35 施設で、フルオロキノロン(FQ)、第 3 世代セファロスポリン、カルバペネム及びバンコマイシン製剤が投与された症例を調査した 2 。調査期間内の 1,209 症例で使用され、内訳は FQ 734 症例、第 3 世代セファロスポリン 467 症例、カルバペネム 8 症例で、バンコマイシン製剤は使用されなかった。FQ と第 3 世代セファロスポリンともに大よりも猫で有意に注射剤の使用割合が高かった。この 2 剤は動物種に関わらず皮膚/耳疾患に多く使用される傾向にあったが、その他疾患への使用状況は犬猫間で異なった。

3. 新たなデータ収集解析手法の取り組み

日本中央競馬会畜産振興事業において、いくつかの養豚農家を対象に電子指示書システムの実証試験がされている。このシステムが稼働すれば、養豚業で問題となっている疾病をリアルタイムで把握し、使用される抗菌剤の成分や投与方法等に関する実態把握が期待できる。

- 1. Terashi Y, Hirata Y, Asai T. Antimicrobial usage surveys using electronic medical records in cattle practice in Gifu Prefecture. J Vet Med Sci. 2023 85(10): 1106-1109
- 2. 村上麻実、原田和記、浅井鉄夫 岐阜県の愛玩動物病院における医療上重要な抗菌薬の使用実態調査.日獣会誌. 2023 76: e164-e169.

(8)環境

抗菌薬も含めて、医薬品や日用品等の医薬品類は、Pharmaceuticals and Personal Care Products (PPCPs) とも呼ばれ、低濃度であっても生理活性作用を持つことがあるため、水生生態系への影響が懸念されている ¹。抗菌薬については医薬品類の一つとして、下水や下水処理水、再生水、環境水、汚泥という環境中での抗菌薬濃度の測定結果がいくつかの研究で示されている ²。

下水処理の結果生じた下水汚泥(バイオマス)の一部は、嫌気性消化やコンポスト化を経て農業肥料として再利用される場合があるが、PPCPs が下水処理過程や下水汚泥の消化過程で分解される度合いは PPCPs によって異なる。例えば、抗菌薬の中では、サルファ剤はそのほとんどが分解されるが、オフロキサシンやノルフロキサシンといったフルオロキノロン類は、分解されず高濃度に汚泥中に残留する 3 。PPCPs の生分解過程は水温による影響を受け、また下水処理過程における水理的滞留時間、活性汚泥の処理濃度、滞留時間などの処理条件によって、PPCPs の除去性が影響を受ける。さらに除去を進めるため、膜分離活性汚泥法を用いて抗菌剤の除去性を改善する研究が行われている 1 。また下水処理後にオゾンや促進酸化処理を導入することで抗菌薬除去の効率性を高める研究も国内外で数多く行われていることから 2 、日本での排出実態と開発状況について把握する必要がある。

日本の都市部の河川で検出される抗菌薬濃度を下水処理場の流入下水で調べた研究では、CPFX とクラリスロマイシンの実測濃度とこれらの抗菌薬の出荷量や販売量から予測される濃度にはある程度近似性がみられ、薬剤の出荷量や販売量によって抗菌薬の下水濃度を予測できるかもしれないことが指摘されている 4 。この研究の中では、例えば CPFX が下水に 51 から 442 ng/L、クラリスロマイシンが 886 から 1,866 ng/L 含まれていたことが示されている。なお、環境省が実施した化学物質環境実態調査において、河川水などからアジスロマイシンが最大 130 ng/L、アモキシシリンが最大 2.3 ng/L、チアムリンが最大 3.1 ng/L、レボフロキサシンが 540 ng/L 及びクラリスロマイシンが 240 ng/L がそれぞれ検出 5 され、アンピシリンが最大 1.4 ng/L が検出 6 され、ストレプトマイシンが最大 2.3 ng/L が検出 7 されている。

- 1. 田中宏明ら."水環境の医薬品類汚染とその削減技術の開発"環境技術 Vol.37 No. 12., 2008.
- 2. Park J, et al. "Removal characteristics of PPCPs: comparison between membrane bioreactor and various biological treatment process." Chemosphere. 2017; 179: 347e358.
- 3. Narumiya M, et al. "Phase distribution and removal of PPCPs during anaerobic sludge digestion" Journal of Hazardous Materials 2013; 260: 305-312.
- 4. Azuma T, et al. "Evaluation of concentrations of pharmaceuticals detected in sewage influents in Japan by using annual shipping and sales data" Chemosphere. 2015;138:770-776.
- 5. 2019 年度(令和元年度) 化学物質環境実態調査 調査結果報告書 http://www.env.go.jp/chemi/kurohon/2020/index.html
- 6. 「令和 2 年度化学物質環境実態調査結果(概要)」について, https://www.env.go.jp/press/110366.html.
- 7. 2020 年度(令和 2 年度) 化学物質環境実態調査 調査結果報告書 http://www.env.go.jp/chemi/kurohon/2021/index.html
- 8. 2021 年度(令和 3 年度) 化学物質環境実態調査 調査結果報告書 http://www.env.go.jp/chemi/kurohon/2022/index.html

8. 日本における薬剤耐性に関する国民意識

(1) 一般国民への調査

① 国民を対象とした意識調査

厚生労働科学研究費補助金を用いて、国民の薬剤耐性に関する意識についての調査を 2017 年 3 月、 2018年2月、2019年9月、2020年9月に行い123、2022年10月に第5回目を行った。いずれもイ ンテージリサーチ社に登録されているモニター(医療従事者は除く)を対象にインターネットを通じ てアンケート調査を行った。3000人を目標対象数として調査を開始し、2017年は3.390人、2018年 は 3,192 人、2019 年は 3,218 人、2020 年は 3,200 人、2022 年は 3,193 人から有効回答を得た。回答 者の性別は女性 48.8% (2017 年) 、49.7% (2018 年) 、52.2% (2019 年) 、50.4% (2020 年) 、 50.4%(2022 年)であった。2019 年までは回答者全体の 40%以上がかぜを理由として抗菌薬を内服 していたが、2020年は29.8%に減少し、今回2022年は19.6%であった。新型コロナウイルス感染症 で 15.5%が内服していたとの回答であり、かぜと合わせると 35.1%であった。かぜに対する抗菌薬 内服者の割合は減っていた。しかしながら、これまでと大きく変わらず、約4割の回答者が、「かぜ やインフルエンザに対して抗菌薬が効果的である」と答えていた。また、「抗生物質の内服を自己判 断で中止した」と回答した者が全体の約2割、「その抗生物質を自宅に保管している」と回答した者 が約1割存在した。また、「抗生物質を自宅に保管している」と回答した者の中で、約8割の者が 「自己判断で使用したことがある」と答えていた。今回の調査結果も過去4回の調査での回答の傾向 とほぼ同様であった。国民の意識を変えていくためには行動経済学的手法を含め、様々な手法を用い た啓発活動を継続的に行っていく必要がある。

表 90 抗生物質を内服することになった理由 (%)

n=3,390(2017 年)、 3,192(2018 年)、					
3,218(2019 年)、	0017 (01)	0010 = (0/)	0010 = (0/)	0000 = (0/)	0000 = (0)
3,200(2020年)、	2017年(%)	2018年(%)	2019 年(%)	2020年(%)	2022 年(%)
3,193(2022 年)					
(複数回答可)					
風邪	45.5	44.7	41.2	29.8	19.6
その他/不明	24.3	21.2	23.2	30.4	32.5
インフルエンザ	11.6	12.4	12.0	5.8	2.6
発熱	10.7	11.3	8.5	7.8	9.9
鼻咽頭炎	9.5	10.8	10.5	9.9	8.3
咳	9.0	10.8	6.9	4.5	5.0
咽頭痛	7.7	7.8	8.2	7.1	8.1
皮膚感染または創部感染症	6.5	7.0	9.0	14.5	11.8
気管支炎	5.4	6.6	5.1	5.9	5.8
頭痛	4.3	5.0	4.1	5.0	7.0
下痢	3.1	3.2	2.6	3.1	2.3
尿路感染症	2.3	2.5	2.7	4.7	3.5
肺炎	1.4	1.7	1.3	1.2	1.2
新型コロナウイルス感染症	-	-	-	-	15.5

表 91 次の内容についてあなたはどう思いますか? (%)

		2017年	2018年	2019 年	2020年	2022 年
		(n=3,390)	(n=3,192)	(n=3,218)	(n=3,200)	(n=3,193)
抗生物質はウイルス	正しい	46.8	46.6	52.4	42.6	46.3
を	間違い	21.9	20.3	17.7	23.5	19.5
やっつける	わからない	31.3	33.0	29.9	33.9	34.2
風邪やインフルエン	正しい	40.6	43.8	43.9	40.4	43.1
ザに抗生物質は効果	間違い	24.6	22.1	22.7	23.1	20.7
的だ	わからない	34.8	34.1	33.4	36.4	36.2
不必要に抗生物質を	正しい	67.5	68.8	66.4	64.9	60.8
使用しているとその	間違い	3.1	3.7	3.4	3.3	4.3
抗生物質が効かなく	わからない	29.4	27.5	30.2	31.8	34.9
なる	わかりない	29.4	27.5	30.2	31.0	34.9
抗生物質には副作用	正しい	38.8	41.5	45.7	45.6	42.6
が	間違い	12.7	13.4	10.5	9.9	11.2
つきものである	わからない	48.6	45.0	43.8	44.5	46.2

表 92 次の内容にあなたはあてはまりますか? (%)

		2017年 (n=3,390)	2018年 (n=3,192)	2019年 (n=3,218)	2020年 (n=3,200)	2022 年 (n=3,193)
自らの判断で治療中の抗生 物質を途中で止めたり、飲	はい	23.6	24.0	24.6	23.3	22.2
む量や回数を加減したこと がある	いいえ	76.4	76.0	75.4	76.7	77.8
自宅に抗生物質を保管して	はい	11.7	11.9	9.8	9.3	10.2
いる	いいえ	88.3	88.1	90.2	90.7	89.8

表 93 次の内容にあなたはあてはまりますか? (%)

		2017年	2018年	2019 年	2020年	2022 年
		(n=396*)	(n=426*)	(n=3,218)	(n=298)	(n=326)
自宅に保管している抗生物	はい	75.8	77.5	75.6	76.2	81.3
質を自分で使ったことがある	いいえ	24.2	22.5	24.4	23.8	18.7
自宅に保管している抗生物 質を、家族や友人にあげて	はい	26.5	27.2	28.5	25.5	35.6
使ったことがある	いいえ	73.5	72.8	71.5	74.5	64.4

^{*}有効回答をした人の中で、自宅に抗生物質を保管していた人のみ。

引用文献

- 1. 大曲貴夫ら."厚生労働科学研究費補助金 (新興・再興感染症及び予防接種政策推進研究事業) 平成 28 年度分担研究報告書 医療機関等における薬剤耐性菌の感染制御に関する研究 (H28-新興行-一般-003) 国民の薬剤耐性に関する意識についての研究"。2017
- 2. 大曲貴夫ら."厚生労働科学研究費補助金(疾病・障害対策研究分野 新興・再興感染症及び予防接種政策推進研究)平成 29 年度分担研究報告書 AMR アクションプランの実行に関する研究(H29-新興行政-指定-005)一般市民の AMR に関する意識調査の 1 年経過後の追跡調査"、2019
- 3. 大曲貴夫ら."厚生労働科学研究費補助金(疾病・障害対策研究分野 新興・再興感染症及び予防接種政策推進研究)平成 29 年度分担研究報告書 AMR アクションプランの実行に関する研究(H29-新興行政-指定-005)AMR 対策の教育啓発に関する研究".2020

② 20-30 歳代の抗菌薬の捉え方・受療行動に関する調査

匿名医療保険等関連情報データベース(NDB)に基づいたサーベイランスでは、どの年代も男性よりも女性の方が抗菌薬の使用量(DID)が多く、特に 20-39 歳の女性の使用量が多くなっている。この理由を探るため、20-29 歳、30-39 歳男女別に各 1,000 例、合計 4,000 例を対象とし、抗菌薬の捉え方や受療行動に関するインターネット調査を 2021 年 2 月に実施した。この 1 年間に病院やクリニック(歯科を含む)を 6 回以上受診したと回答したのは、男性 22.6%、女性 36.1%であり、女性の方が受診回数が多かった。受診時に抗菌薬を処方されたと回答したのは、男性 38.6%、女性 38.4%であった。抗菌薬を処方された理由がかぜと回答したのは男性 40.2%、女性 24.3%であった。病院やクリニックで抗菌薬の処方を希望したことがあるのは男性 22.2%、女性 18.3%であった。かぜをひいた時にすぐに受診するのは男性 11.6%、女性 8.4%、体調が悪い時はがまんせずに薬を飲んだ方がよいと思うのは、男性 31.2%、女性 39.8%であった。調査結果からは、1 回あたりの受診で抗菌薬を処方される割合に男女差はなく、受診回数の違いが抗菌薬の使用量の男女差の原因と考えられた。効果的な抗菌薬適正使用推進活動を推進するには、感染症や抗菌薬に対する意識や態度、受療行動も考慮して具体的なメッセージを検討する必要がある。

(2) 医療関係者への調査

① 診療所医師を対象とした意識調査

日本化学療法学会・日本感染症学会合同外来抗菌薬適正使用調査委員会は、診療所に勤務する医師 を対象とした意識調査を 2018 年と 2020 年 9-10 月に行った。無作為抽出した全国の 3,000 診療所に 調査票を配布し、記入後返送するという形で実施した。2020年の調査では2018年と比較し、アクシ ョンプランの認知度が上がり、「全然知らない」との回答が 44.9%から 34.8%に減少した (表 93)。 また感冒への抗菌薬処方割合は「0-20%| との回答が 62.0%から 71.1%となり、処方割合が低くな っていた(表 94)。抗菌薬処方の希望に対し「説明した上で処方しない」との回答は 35.5%、「希 望通り処方する|「説明しても納得しなければ処方する|との回答はそれぞれ 10.8%、49.1%であり、 前回の調査結果とほとんど変わらなかった(表 95)。患者教育やコミュニケーションに能動的に関 わる意識は必ずしも高くない可能性がある。自分が感冒の時に抗菌薬を「全く服用しない」44.7%、 「あまり服用しない」28.7%、「ときどき服用する」24.1%、「いつも服用する」2.5%、家族が感冒 のときに抗菌薬を「まったく勧めない」39.1%、「あまり勧めない」31.5%、「時々勧める」27.4%、 「いつも勧める」2.1%であった。これらの結果から感冒に抗菌薬を多く処方している医師は、治療 効果を期待して処方している可能性がある。また、前回と同様に急性気管支炎への抗菌薬の処方割合 が高かった(表 96)。より簡便な病原体診断検査の開発が抗菌薬適正使用の推進に効果的と考えら れる。60歳以上の医師は60歳未満の医師と比較して抗菌薬の適正使用を意識している割合が高かっ たが (69.6% vs 58.5%) 、感冒と診断したときに抗菌薬を処方した割合は「20%以下」との回答が 60 歳未満より少なく (79.5% vs 65.3%) 、薬剤耐性対策の重要性は理解しているものの、それが必 ずしも処方行動につながっていないと考えられた(表 97、98)。アクションプランを達成するため に必要なこととして、過半数の回答者が市民向けの広報を挙げていたのは前回の調査と変わらなかっ た。

表 94 アクションプランの認知度 (%)

	2018年(n=267)	2020年(n=627)
人に説明できる	1.9	3.5
理解している	21.0	27.8
名前だけ知っている	32.2	33.1
全然知らない	44.9	34.8

表 95 感冒と診断したときに抗菌薬を処方した割合 (%)

	2018年(n=242)	2020年(n=543)				
0-20%	62.0	71.1				
21-40%	17.8	16.6				
41-60%	7.4	6.8				
61-80%	8.3	3.5				
81%以上	4.5	2.0				

表 96 感冒と診断した患者や家族が抗菌薬処方を希望したときの対応 (%)

	2018年(n=252)	2020年(n=609)
説明しても納得しなければ処方	50.4	49.1
説明して処方しない	32.9	35.5
希望通り処方する	12.7	10.8
その他	3.7	4.6

表 97 急性気管支炎と診断したときに抗菌薬を処方した割合(過去1年間) (%)

	2018年(n=232)	2020年(n=522)
0-20%	31.0	35.4
21-40%	23.7	24.9
41-60%	14.2	15.7
61-80%	9.5	9.0
81%以上	21.6	14.9

表 98 過去1年間に抗菌薬適正使用をどのくらい意識していたか(%)

	常に/かなり意識	多少は/全く意識せず
60 歳未満	58.5	41.5
60 歳以上	69.6	30.4

表 99 感冒と診断したときに抗菌薬を処方した割(過去 1 年間)(%)

	20%以下	20%以上
60 歳未満	79.5	20.5
60 歳以上	65.3	34.7

③ 薬学部教育における感染症・抗菌薬に関する研究

薬剤師は院内及び地域の ICT と ASP 活動を担う医療チームの重要な一員であり、薬剤師の AMR および臨床感染症の教育の必要性は増している。しかし日本の薬学部教育において、臨床感染症についての教育状況は明らかになっていなかったため、2022 年 2 月から 3 月にかけて、日本国内の薬学部を対象とした全国横断調査を実施した。全国の薬学部に対して記入式のアンケート調査票を送付し、74 大学中 44 大学より回答を得た。

感染症教育担当教員数の中央値は7名[4-12]、そのうち実務家教員は3名[1-6]であった。感染症の臨床経験を有する教員がいる大学は62.8%であった。指導内容について、不十分もしくは未実施と回答が多かったのは、周術期における予防的抗菌薬の考え方(不十分または未実施が合計74.5%)、抗菌薬処方が不要な場合の患者への説明の仕方(不十分または未実施が合計76.8%)、慎重な抗菌薬処方についての患者教育(不十分または未実施が合計79%)、感染症診療・感染対策におけるチーム医療(不十分または未実施が合計53.5%)、抗菌薬の開発研究に関する教育(不十分または未実施が合計76.8%)などであった。臨床感染症教育の課題としては、講義時間の不足、専門医の不足が上位に挙げられた。この調査から、臨床感染症および AMR 教育について、教育状況や教育資源が大きくばらついていることが明らかになった。カリキュラム全体と教員数を含む資源の検討と改善が必要なことが示唆された。

(3) 獣医学生への調査

農林水産省は全国の獣医学生を対象に 2019 年度から薬剤耐性対策に関する講義と意識調査を実施している。2020 年度以前の意識調査は講義後に実施していたが、2021 年度以降は講義の成果を確認するため、講義前も実施している。2022 年度の調査はインターネットを通じたアンケート調査の形で実施した。2022 年度の調査では、12 大学 530 名(2、3 年生: 269 名、4 年生: 176 名、5 年生: 85 名)の学生から回答があった。

講義前に実施した意識調査のうち、抗菌剤に関する質問(表 100)において、「細菌感染症に効く」と答えた学生が 93.6%と、正しい知識をもつ学生数がわずかに増加しており、獣医学教育の中で抗菌剤に関する一定の知識を習得していることが推察された。しかしながら、抗菌剤は「風邪に効く」や「ウイルスに効く」を選択した学生が一定数いたことから、引き続き正しい知識の普及に努めていく必要がある。

動物分野の薬剤耐性対策について知っていること(表 101)としては、「家畜分野における薬剤耐性モニタリング(JVARM)が行われていること」や「動物分野と医療分野の連携」を選んだ学生の割合が高かったものの、全体の半数以下であった。また、現場で薬剤耐性対策を実践する上で重要な知識である、ワクチン接種による「感染機会の低減が薬剤耐性対策に繋がること」や「第二次選択薬」を知っている学生は全体の3割程度に留まっていた。特に「感染機会の低減が薬剤耐性対策に繋がること」を知っている学生の割合はこの3年間で傾向は変わらなかった。

動物分野での薬剤耐性対策において獣医師は重要な役割を担うことから、獣医学生への抗菌剤の正しい知識及び慎重使用に関する教育を引き続き継続していくことが重要である。

表 100 抗菌剤に関するイメージを選んでください (%)

	2、3年生	4年生	5年生	2020年全体	2021年全体	2022年全体
	(n=269)	(n=176)	(n=85)	(n=394)	(n=404)	(n=530)
風邪に効く	32.0	38.1	22.4	26.6	32.2	32.5
細菌感染症に効く	94.1	90.3	98.8	92.4	91.0	93.6
ウイルスに効く*	26.8	24.4	7.1	4.8	10.4	22.8
手術後の合併症予防に効く	39.4	47.7	78.8	58.6	64.9	48.5
エサに混ぜる飼料添加物として	31.6	44.9	34.1	53.8	41.6	36.4
使われる	31.0	44.9	34.1	33.8	41.0	30.4
野菜などに使う農薬に使われる	16.7	17.6	12.9	8.4	13.6	16.4

^{*2021}年度までは「インフルエンザに効く」としていた。

^{**2020}年度の意識調査は、講義後のみ実施したため数値にバイアスがかかっている可能性がある(2021及び2022年度は講義前に実施した調査結果)。

表 101 動物分野における薬剤耐性対策について知っていることを選んでください (%)

	2、3年生 (n=269)	4年生 (n=176)	5年生 (n=85)	2020全体 (n=394)	2021全体 (n=404)	2022全体 (n=530)
薬剤耐性(AMR)対策アクションプランが策定され、実行されていること	17.1	46.6	42.4	43.9	18.8	30.9
第二次選択薬と呼ばれる抗菌剤 があること	21.6	30.7	82.4	32.7	33.4	34.3
家畜分野における薬剤耐性モニ タリング(JVARM)が行われて いること	42.4	48.3	51.8	21.6	18.6	45.8
ワクチン接種による感染機会の 低減が薬剤耐性対策に繋がるこ と	29.0	29.0	29.4	28.9	29.0	29.1
動物分野と医療分野の連携	39.8	47.2	64.7	45.9	44.6	46.2
リスク評価に基づくリスク管理 措置の決定	31.2	45.5	40	31.7	21.3	37.4
知らない	17.8	6.3	5.9	9.9	18.1	12.1

- 1. 大曲貴夫ら: "厚生労働科学研究費補助金 (新興・再興感染症及び予防接種政策推進研究事業) 平成 28 年度分担研究報告書 医療機関等における薬剤耐性菌の感染制御に関する研究 (H28-新興行-一般-003) 国民の薬剤耐性に関する意識についての研究". 2017
- 2. 大曲貴夫ら:"厚生労働科学研究費補助金(疾病・障害対策研究分野 新興・再興感染症及び予防接種政策推進研究)平成 29 年度分担研究報告書 AMR アクションプランの実行に関する研究(H29-新興行政-指定-005)一般市民の AMR に関する意識調査の 1 年経過後の追跡調査".2019
- 3. 大曲貴夫ら."厚生労働科学研究費補助金(疾病・障害対策研究分野 新興・再興感染症及び予防接種政策推進研究)平成 29 年度分担研究報告書 AMR アクションプランの実行に関する研究(H29-新興行政-指定-005)AMR 対策の教育啓発に関する研究".2020

9. 今後の展望

2016年に発表された「薬剤耐性(AMR)対策アクションプラン(2016-2020)」は、ヒト、動物、農業、食品及び環境分野における薬剤耐性菌の現状と抗微生物薬使用量に関する統合的なワンヘルス動向調査を実施することを目指しており、本報告書はその成果を集約し、AMR 対策の更なる推進への貢献を果たした。この報告書により、日本における薬剤耐性問題に対する詳細な理解と、それに基づく施策の展開が可能となった。

「薬剤耐性(AMR)対策アクションプラン(2023-2027)」では、これまでの成果を踏まえた上で、更新された目標と戦略を提案し、AMR 対策における新たな道筋を提示している。AMR 問題へのワンヘルス・アプローチの重要性が再強調され、ヒト、動物、農業、食品及び環境の各動向調査の情報を連携させ、国際比較等も行いながら、AMR の推移や対策等について定期的に分析・評価を行うことが求められている。また、国内外での薬剤耐性と抗微生物薬使用の動向に関するデータ収集と分析の方法論の更新や、AMR 対策のための国際的な協力と共同作業の重要性が強調されている。今後も先進的な調査への取組を続けることが、世界の AMR 対策をリードする上でも重要と考えられる。

ヒト分野において、「抗微生物薬適正使用の手引き」等を参考とし、急性気道感染症を中心に不必要な抗菌薬処方を減少させるとともに、抗菌薬を処方する場合には適切性が求められる。抗菌薬適正使用の推進は、適切な抗菌薬を必要なときに使用できることが前提であり、一部の抗菌薬が臨床現場において入手困難になっている現状を踏まえ、必須な抗菌薬の安定供給を確保することが重要である。AMR に関連する種々のサーベイランスを用い、地域毎の耐性菌情報や抗菌薬使用状況の入手が可能になって来ていることを踏まえ、情報を活用し、地域の状況に応じた抗菌薬の選択や適切な感染対策の推進が望まれる。さらに、抗菌薬適正使用を進める上で、国民および医療従事者に対して、行動経済が育的手法を含め、様々な手法を用いた教育啓発活動を継続・発展していく必要がある。

動物分野において、2017年から開始した疾病にり患した愛玩動物由来の大腸菌において、第3世代セファロスポリン及びフルオロキノロン系に対する耐性率が畜産動物由来の大腸菌と比較して高いことが確認された。そのことから、これまで実施してきた畜産分野の薬剤耐性対策に加え、2020年から開始された愛玩動物における慎重使用の手引きの普及等により AMR 対策を継続・強化していくことが必要である。また、「薬剤耐性(AMR)対策アクションプラン(2016-2020)」の成果指標である健康な畜産動物由来大腸菌の第3世代セファロスポリン及びフルオロキノロン系の抗菌剤に対する耐性率は低い水準が保たれており、目標を達成している状況にあると考えられる。一方、畜産動物においてテトラサイクリン系の抗菌剤の販売量は 2018年から 2020年に減少しているが、成果指標である健康な畜産動物由来大腸菌のテトラサイクリン耐性率に変動がみられない。そのため、引き続きワクチン等の開発・実用化、使用の推進や飼養衛生管理水準の向上等により抗菌剤全体の使用機会を低減し、適正かつ慎重な使用の推進を図るとともに、各種抗菌剤に対する耐性率の動向を確認していく必要がある。

本報告書においては、2019 年度に引き続き、ヒト、動物、農業における抗菌薬の使用量(又は販売量)の比較が可能となり、各分野で使用されている抗菌薬の系統毎の使用量の違いが示されたこと、疾病にり患した愛玩動物に続き健康な愛玩動物の薬剤耐性率が報告されたこと、食品分野の薬剤耐性菌や環境における薬剤耐性菌の動向データが充実したことなど大きな進展が見られ、来年以降も各分野の動向調査において進展が期待される。

さらに、「薬剤耐性(AMR)対策アクションプラン(2016-2020)」では、薬剤耐性ワンヘルス動向調査年次報告書はワンストップでヒト、動物、食品等の薬剤耐性菌の薬剤感受性データを確認で

きるハブとして重要な役割を果たしてきた。今後、実際にワンヘルスの枠組みの中で特定の薬剤耐性菌、薬剤耐性遺伝子の増減や異なるセクター間の移動の有無やその程度を理解し、リスク評価・リスク管理に応用していく上で、薬剤耐性遺伝子、薬剤耐性菌ゲノムデータの解析が極めて重要である。この点についても「薬剤耐性(AMR)対策アクションプラン(2023-2027)」に基づいて着実に実行することが重要である。産官学が連携し異なる分野の担当組織の協力体制を推進しつつ、ヒトと動物と環境のリスクの横断的な評価を行っていく。これらの努力が、国内外での AMR 問題への効果的な対応を支援し、日本が世界の AMR 対策をリードする上でも重要な役割を果たすことになる。また、薬剤耐性に関するデータの収集と分析は、AMR 対策のための重要な基盤であり、今後の取り組みにおいて進展が期待される。これらの取り組みは、日本における薬剤耐性対策に大きく貢献し、国民の健康と公衆衛生の向上に寄与することが期待される。

参考資料

(1)院内感染対策サーベイランス事業(JANIS)

① 概要

JANIS は国内の医療機関における院内感染症の発生状況、薬剤耐性菌の分離状況及び薬剤耐性菌による感染症の発生状況を調査し、日本の院内感染の概況を把握し医療現場への院内感染対策に有用な情報の還元等を行うことを目的として実施されている。全参加医療機関の情報を集計した結果については、JANIS のウェブサイト上(https://janis.mhlw.go.jp)で公開されている。参加医療機関ごとの情報については解析した上で個別に報告書を返却し、それぞれの医療機関での感染対策の策定やその評価に活用に役立てられている。JANIS は任意参加型の動向調査であり、2023 年 12 月時点で 3,200 の病院が参加している。

JANIS 検査部門では、国内の病院で分離された細菌の検査データを収集し臨床的に重要な菌種について主要薬剤の耐性の割合を集計し公開している。2023 年 12 月時点で検査部門には 3,074 病院が参加している。集計は参加病院の入院患者ならびに外来患者の検体から分離された細菌のデータを対象にしている。2014 年からは病院の規模を 200 床以上、200 床未満に分けた集計も行なっている。国による動向調査としてより代表性がある情報を提供するために、集計対象とするデータの選定や集計手法について今後さらに検討が必要である。薬剤感受性試験の判定は原則 CLSI (ただし一部は日本の感染症法)に基づいている。

現在、薬剤感受性試験の精度管理については各病院に委ねられている。病院検査室での薬剤感受性 試験精度の向上のため、日本臨床微生物学会が中心となり精度管理プログラムが開発され、2016 年 度より試行されている。

JANIS は、統計法に基づく調査であり、感染症法に基づく感染症発生動向調査とは別の調査である。参加は任意ではあるが、2014 年から JANIS 等への参加が診療報酬による感染防止対策加算1の要件となっている。JANIS は厚生労働省の事業であり、運営方針は感染症、薬剤耐性などの専門家から構成される運営会議で決定される。データ解析などの実務は国立感染症研究所薬剤耐性研究センター第2室が事務局として担当している。

なお、WHO が 2015 年に立ち上げた薬剤耐性に関する国際的な調査 GLASS では、ヒト分野のデータについて各国からの提出が求められており 1 、日本からは JANIS などの調査結果を基に必要なデータを提出している(既に 2014 年から 2022 年分のデータを提出済み)。サーベイランスの国際協調の観点から、JANIS では集計手法について検討が進められている。GLASS では、今後、調査対象を家畜など他分野にも拡大することが検討されており 1 、本報告書に記載された調査結果からも情報が提供されることが期待される。

② 届出方法

JANIS は、(1)検査部門サーベイランス(2)全入院患者部門サーベイランス(3)手術部位感染部門サーベイランス(4)治療室部門サーベイランス(5)新生児集中治療室部門サーベイランスの5部門から構成されている。医療機関は、それぞれの目的や状況に応じて参加する部門を選択する。5部門のうち、検査部門が薬剤耐性菌の分離状況に関するサーベイランスである。検査部門では各医療機関の検査室に設置されている細菌検査装置、システム等から分離菌に関する全データを取り出し、JANIS フォーマットに変換したものをウェブ送信により提出する。提出されたデータを集計して、臨

床的に重要な主要な菌種について各種薬剤に対する耐性の割合を算出し、日本の National data として結果を公開している。

③ 今後の展望

JANIS 参加医療機関は 200 床以上の比較的大規模の病院が多い。このようなデータの偏りの解消は 今後の JANIS における課題である。従来は JANIS の対象外であった診療所については、毎月1件以 上の細菌培養検査を実施している診療所の JANIS 検査部門への参加が 2022 年から可能になり、その データを集計して公開するための検討が進められている。

(2) 感染症発生動向調查事業(NESID)

① 概要

NESID は、国内の感染症に関する情報の収集及び公表、発生状況及び動向の把握を、医師・獣医師の届出に基づいて行うものである。現在、1999 年4月に施行された「感染症の予防及び感染症の患者に対する医療に関する法律」(以下、感染症法)に基づいて実施されている。同事業の目的は、感染症の発生情報の正確な把握と分析、その結果の国民や医療関係者への迅速な提供・公開により、感染症に対する有効かつ的確な予防・診断・治療に係る対策を図り、多様な感染症の発生及びまん延を防止するとともに、病原体情報を収集、分析することで、流行している病原体の検出状況及び特性を確認し、適切な感染症対策を立案することである。

2019 年 7 月時点で、NESID において届出対象となっている薬剤耐性菌感染症は以下の 7 疾患であり、全て五類感染症に位置付けられている。全ての医師が届出を行う全数把握対象疾患は、バンコマイシン耐性腸球菌感染症(VRE、1999 年 4 月指定)、バンコマイシン耐性黄色ブドウ球菌感染症(VRSA、2003 年 11 月指定)、カルバペネム耐性腸内細菌目細菌感染症(CRE、2014 年 9 月指定)、薬剤耐性アシネトバクター感染症(MDRA、2011 年 2 月から基幹定点把握対象疾患となり、2014 年 9 月から全数把握対象疾患へ変更)の 4 疾患である。基幹定点医療機関(原則病床数 300 以上の内科及び外科を標榜する医療機関、全国約 500 か所)が届出を行う疾患は、ペニシリン耐性肺炎球菌感染症(PRSP、1999 年 4 月指定)、メチシリン耐性黄色ブドウ球菌感染症(MRSA、1999 年 4 月指定)、薬剤耐性緑膿菌感染症(MDRP、1999 年 4 月指定)の 3 疾患である。

② 届出基準

上記の届出対象疾患を診断した医師(定点把握疾患については指定届出機関の管理者)は、所定の届出様式を用いて保健所に届け出る。それぞれの届出基準は、以下の表 101 に示す検査所見を満たす菌を検出し、この分離菌が感染症の起因菌と判定されるか、通常無菌的であるべき検体からの検出である場合となっており、保菌者は届出対象ではない。

表 102 届出基準

報告対象	届出の基準(要約)						
VRE	腸球菌が分離同定され、バンコマイシンの MIC が 16 μg/mL 以上						
VRSA	黄色ブドウ球菌が分離同定され、バンコマイシンの MIC が 16 μg/mL 以上						
	腸内細菌目細菌が分離同定され、ア、イのいずれかを満たす						
	ア メロペネムの MIC が 2 μg/mL 以上であること、						
	又はメロペネムの感受性ディスク(KB)の阻止円の直径が 22 mm以下であること						
CRE	イ 次のいずれにも該当することの確認						
CRE	(ア)イミペネムの MIC が 2 μg/mL 以上であること、						
	又はイミペネムの感受性ディスク(KB)の阻止円の直径が 22 mm以下であること						
	(イ)セフメタゾールの MIC が 64 μg/mL 以上であること、						
	又はセフメタゾールの感受性ディスク(KB)の阻止円の直径が 12 mm以下であること						
	アシネトバクター属菌が分離同定され、以下の3つの条件を全て満たした場合						
	ア イミペネムの MIC が 16 μg/mL 以上又は、イミペネムの感受性ディスク(KB)の阻止円の直径が 13 mm以下						
MDRA	イ アミカシンの MIC が 32 μg/mL 以上又は、アミカシンの感受性ディスク(KB)の阻止円の直径が 14 mm以下						
	ウ シプロフロキサシンの MIC が 4 μg/mL 以上						
	又は、シプロフロキサシンの感受性ディスク(KB)の阻止円の直径が 15 mm以下						
PRSP	肺炎球菌が分離同定され、ペニシリンの MIC が $0.125~\mu \mathrm{g/mL}$ 以上						
PRSP	又は、オキサシリンの感受性ディスク(KB)の阻止円の直径が 19 mm以下						
MRSA	黄色ブドウ球菌が分離同定され、オキサシリンの MIC が 4 μg/mL 以上						
NCAIN	又は、オキサシリンの感受性ディスク(KB)の阻止円の直径が 10 mm以下						
	緑膿菌が分離同定され、以下の3つの条件を全て満たした場合						
	ア イミペネムの MIC が 16 μg/mL 以上又は、イミペネムの感受性ディスク(KB)の阻止円の直径が 13 mm以下						
MDRP	イ アミカシンの MIC が 32 μg/mL 以上又は、アミカシンの感受性ディスク(KB)の阻止円の直径が 14 mm以下						
	ウ シプロフロキサシンの MIC が 4 μg/mL 以上						
	又は、シプロフロキサシンの感受性ディスク(KB)の阻止円の直径が 15 mm以下						

3 体制

病院が直接 NESID に入力登録又は保健所が病院から届け出された内容を確認の上、NESID に入力登録し、引き続き、地方感染症情報センター、国立感染症研究所感染症疫学センター(中央感染症情報センター)等で情報の確認・追加情報収集・解析が行われ、感染症法に基づき収集した患者の発生状況(報告数、推移等)を中心に、感染症発生動向調査週報(Infectious Diseases Weekly Report:IDWR)等を用いて、国民に還元されている。2017 年 3 月の厚生労働省健康局結核感染症課長通知により、CRE 感染症などの届出があった場合には、その薬剤耐性菌について地方衛生研究所等で試験検査を実施することとなった。以後、感染症発生動向調査の枠組みで、CRE 感染症の届出症例より分離された株については主要なカルバペネマーゼ遺伝子の検出状況が収集・解析されており、病原微生物検出情報(Infectious Agents Surveillance Report:IASR)等で公表されている。

④ 今後の展望

感染症発生動向調査事業における薬剤耐性菌感染症の届出は、感染症法の下で、定められた症例定義に基づいて届け出られていることから、一定の質が担保されていると考えられる。全数把握対象疾患は、過小評価があることは想定されるが、患者発生動向の全体像が把握可能である。また、患者発生動向に異常が認められる場合に、保健所等による医療機関に対して、調査や指導等の介入の契機となりうるなどの点でも有用性があると考えられる。基幹定点医療機関からの届出対象疾患については、1999年のシステム開始以来の傾向をとらえることができることから、対象疾病の発生動向を中長期的な動向を監視する上で有用であると考えられる。また、2017年よりCREを中心に病原体サーベイランスが開始されており、今後VREやMDRAについても同様に耐性遺伝子の情報の収集・解析され薬剤耐性菌対策に有用な情報が集積・活用されることが期待される。

(3) 感染対策連携共通プラットフォーム(J-SIPHE)

① 概要

2017 年に感染対策地域連携支援システム Regional Infection Control Support System (RICSS) を、地域に加え国レベルでの感染対策に係るサーベイランスプラットフォームとして AMR 対策に活用していくために、AMR 臨床リファレンスセンターに移管し、項目および規約の改定、システム改修を行い、名称を Japan Surveillance for Infection Prevention and Healthcare Epidemiology: J-SIPHE (感染対策連携共通プラットフォーム)へ変更した。

地域連携の推進とともに病院での AMR 対策に活用できるシステムとして運用が開始され、多くのデータが蓄積され利用施設に還元すべく年報を毎年公開している。2022年の年報の対象施設は1,876施設であった。

自施設の感染症診療状況、感染対策や抗菌薬適正使用への取り組み、医療関連感染の発生状況、主要な細菌や薬剤耐性菌の発生状況及びそれらによる血流感染の発生状況、抗菌薬の使用状況等に関する情報を集約し、それらを参加施設が自施設や地域ネットワーク等で活用していくことを目的としている。本システムは AMR 対策に係る指標の構築としての役割も担っている。[太田1]

② 体制

本システムは、感染防止対策加算の枠組みによる地域連携ネットワークでの参加を基本としている。地域連携ネットワーク等を活用した AMR 対策に役立てるために、統一された基準でグループ内の情報を共有することができ、JANIS 検査部門還元情報や入院 EF 統合ファイル等、既存の情報を二次利用する事で、参加施設の負担を減らしながら AMR 対策に必要かつ十分なデータを集計し可視化することができる。[太田 2]

③ 今後の展望

地域連携カンファレンス等の活動に利活用できるよう更なる改修を進め、感染対策への人的リソースが足りない施設が利用しやすく、かつ意義の高いシステム構築を行う必要がある。地域での感染対策のネットワーク構築ならびに感染対策の意思決定に有効活用されることを目標としている。

(4) 耐性結核菌の動向調査

① 概要

結核登録者情報システムは NESID の一部であり、当該年の1月1日から12月31日までの間に新たに登録された結核患者及び潜在性結核感染症者と、当該年12月31日現在に登録されているすべての登録者に関する状況について、情報をとりまとめている。この情報は基本的に「結核患者」に関するものであり、結核の罹患数・罹患率、有病者数、治療状況、結核死亡者数などの情報を主として、起炎菌である結核菌の情報は塗抹陽性率、培養陽性数(培養陽性患者数)、薬剤感受性検査情報などに限定されている。しかしながら、定期に報告される結核菌薬剤耐性情報としては日本では唯一の報告である。

② 調査方法

結核登録者情報に記載されている情報のうち、新登録肺結核菌培養陽性患者での薬剤感受性検査結果を集計している。なお、この項目については従来任意での入力であったが、感染症の予防及び感染症の患者に対する医療に関する法律施行規則の一部を改正する省令(平成二十七年厚生労働省令第百一号:平成二十七年五月二十一日施行)において、第二十七条の八第一項第四号中「病状」の下に「薬剤感受性検査の結果」を加えると明記された。

③ 体制

結核登録者情報は、結核を診断した医師からの届出に基づき、登録保健所の保健師が患者及び担当 医師から情報を収集している。薬剤感受性検査データは病院検査室又は衛生検査所から得られている ものと考えられる。個々のデータは全国の保健所から NESID に入力されている。

④ 今後の展望

結核登録者情報システムに基づく本サーベイランスは、すべての医療機関等から報告された新登録 肺結核菌培養陽性患者の感受性結果を含んでいる。そのため、全国を代表するデータとして、有用と 考えられる。今後の検討課題としては、薬剤感受性検査結果の入力率の向上(現状 80%程度)、薬剤 感受性検査の精度保証を全国的に実施する仕組みの構築、入力の精度管理等があげられる。

(5)動物由来薬剤耐性菌モニタリング(JVARM)

① 概要

JVARM は、農林水産省が全国の家畜保健衛生所とネットワークを構築し 1999 年から開始した動物 分野での薬剤耐性菌の全国的な動向調査であり、WHO の薬剤耐性菌の報告書(Antimicrobial resistance: global report on surveillance 2014)において動向調査事例の一つとして例示されており、世界的にも重要な情報を提供している。

JVARM では、(1)抗菌剤の使用量(販売量から推計)、(2)健康動物由来の指標菌と食品媒介性病原細菌の薬剤耐性調査、及び(3)病気動物由来の病原細菌(野外流行株)の薬剤耐性調査の3つの調査を行い、動物用抗菌剤の有効性を確認するとともに、人医療への影響を考慮した薬剤耐性に関するリスク評価・リスク管理の基礎資料を提供している(図4)。これらの JVARM の調査結果は、農林水産省動物医薬品検査所のウェブサイトにおいて公表されている²。また、2016年度には、我が国の AMR 対策アクションプランの戦略に従って水産動物の薬剤耐性菌調査の強化及び愛玩動物の薬剤耐性菌調査方法に関する検討を行い、2017年度に疾病にり患した犬・猫由来の薬剤耐性菌調査を、2018年度に健康な犬・猫由来の薬剤耐性菌調査を開始した。また、2021年度から畜産環境の薬剤耐性モニタリングの方法等の検討を開始した。

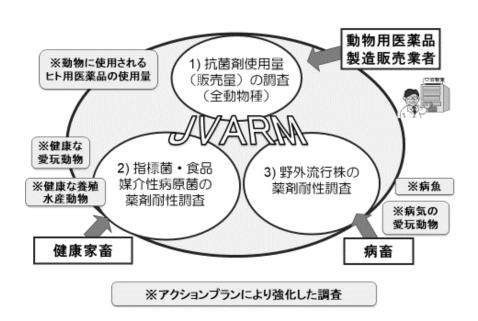


図 4 動物由来の薬剤耐性菌モニタリングの概要

② 薬剤耐性調査実施体制

健康家畜由来の食品媒介性病原細菌及び指標細菌については、JVARM の開始当初は家畜保健衛生所が農場において採取した対象家畜の糞便から分離・同定した菌株を検体とした調査を実施していた。2012 年度より、集約的なサンプリングが可能で、より食品に近いことから、と畜場及び食鳥処理場において採取した糞便から受託検査機関が分離・同定した菌株を用いた調査が開始された。両調査での成績に大きな違いがないことが確認されたことから 2016 年度からは農場での採材からと畜場及び食鳥処理場での採材に移行した(図5)。と畜場(全国5か所)及び食鳥処理場(全国13か所)から採取した糞便サンプルについて、菌分離は菌種選択用培地を用いて実施し、1農場あたり1菌種1株(農場代表菌株)について集計を行った。

家畜における野外流行株については、全国の家畜保健衛生所が病性鑑定材料から分離・同定した菌株を収集し、疾病1発生において 1 個体より分離された 1 株、計 1~2株を調査に用いた。菌株のMIC は動物医薬品検査所で CLSI に準拠した微量液体希釈法により測定している(図5)。調査対象の抗菌性物質は、動物専用抗菌剤、ヒトと動物の両方で使用されている抗菌剤、抗菌性飼料添加物等で重要と思われる成分を広く対象としている。なお、調査対象の抗菌性物質は、過去の調査及びWOAH の陸生動物衛生規約(6、7章)3に準拠し、菌種ごとに選定した。

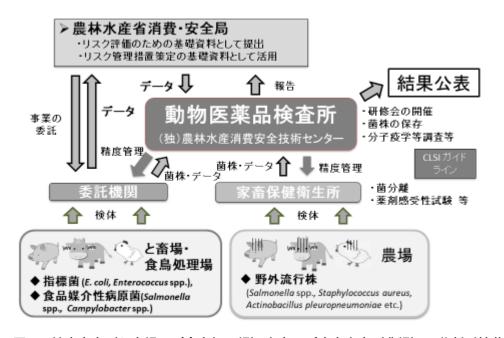


図 5 健康家畜(と畜場及び食鳥処理場)由来及び病畜由来(農場)の薬剤耐性菌モニタリング体制

愛玩動物の調査は、「愛玩動物 AMR 調査に関するワーキンググループ」の検討結果を参考に調査方法を決定しており、2017 年からは疾病にり患した犬及び猫由来の菌株を臨床検査機関から収集した。また 2018 年からは、健康な犬猫を対象とし、日本獣医師会の協力を得て全国の動物病院から検体を収集した(図 6)。

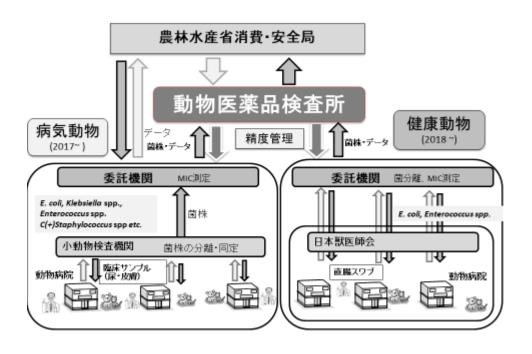


図 6 健康及び疾病にり患した犬・猫由来の薬剤耐性モニタリング体制

検体からの菌分離はいずれも菌種選択用培地を用いて実施し、1病院あたり1菌種1株とした。収集した菌株については検査受託機関においてCLSIに準拠した微量液体希釈法によりMICを測定した。調査対象の抗菌性物質は、家畜の調査で対象としている薬剤に愛玩動物の臨床現場で使用される薬剤を勘案して菌種毎に選定した。

なお、菌株の分離・同定及び薬剤感受性試験に関しては、動物医薬品検査所で毎年実施している家畜保健衛生所の職員に対する研修や、受託検査機関に対する精度管理に関する確認等により、標準化を図るとともに、サンプルの由来、採材日等の調査を併せて実施している。また、JVARMで収集した分離株については動物医薬品検査所で保存を行うとともに、薬剤耐性株の分子疫学的調査のために、遺伝学的性状の解析、薬剤耐性機構の解明等を行っている。また、抗菌性飼料添加物については、FAMICで分析等を実施している。JVARMで得られた成績は、毎年、動物医薬品検査所のホームページに公表されるとともに、食品安全委員会におけるリスク評価への活用やリスク管理を講じるための科学的知見として利用されている。

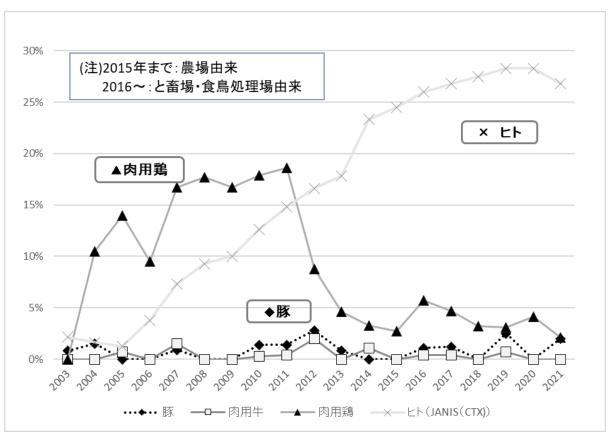


図7 ヒト由来大腸菌と家畜由来大腸菌の第3世代セファロスポリン耐性率の比較

JVARM とヒト医療現場での薬剤耐性菌のモニタリングである JANIS のデータを比較すると、ヒト由来大腸菌と肉用鶏由来大腸菌の第3世代セファロスポリン耐性率は 2011 年まで共に増加傾向にあったが、2012 年以降肉用鶏では激減した。これは、一部の孵卵場で行われていた第3世代セファロスポリンの適応外使用が、関係団体に JVARM の成績を示した上で取りやめるよう指導を行ったことにより中止されたことが要因と考えられる 5 。一方、ヒトでは、その後も増加傾向が続き、ヒトと肉用鶏では異なる傾向が認められている(図 7)。

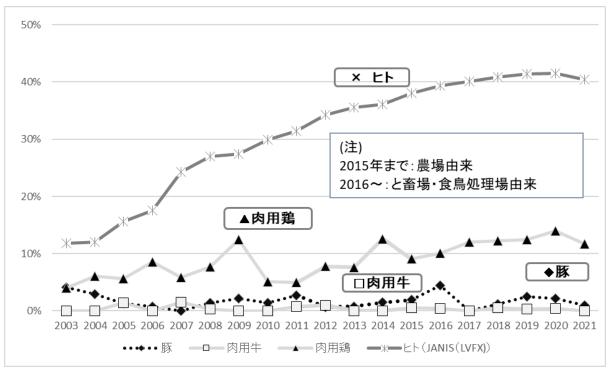


図8 ヒト由来大腸菌と家畜由来大腸菌のフルオロキノロン耐性率の比較

ヒト由来大腸菌では 2003 年からフルオロキノロン耐性率の増加傾向が認められる一方、家畜由来 大腸菌のフルオロキノロン耐性率は豚由来株及び肉用牛由来株では 5%未満、肉用鶏由来株では 15% 未満で推移し、ヒトと家畜では異なる傾向が認められた(図8)

③ 抗菌剤販売量調査体制

「動物用医薬品等取締規則」(平成 16 年農林水産省令第 107 号)第 71 条の 2 の規定に基づく製造販売業者からの動物用医薬品の取扱数量の届出により、毎年、動物用抗菌剤販売量調査を行っている(図 9)。2001 年から、系統ごと、剤形ごとの製造販売量に加え、有効成分ごと、投与経路ごとの販売量及び動物種ごとの推定販売量に関する調査を実施している。集計結果は、「動物用医薬品、医薬部外品及び医療機器販売高年報」として動物医薬品検査所のウェブサイトに公表されている。また、WOAH 抗菌剤使用量の動向に関する陸生動物衛生規約(6、8 章)。において、世界各国の使用量を把握し比較するために求められている動物種ごとの有効成分の使用量の成績については、当該調査結果をもとに報告されている。

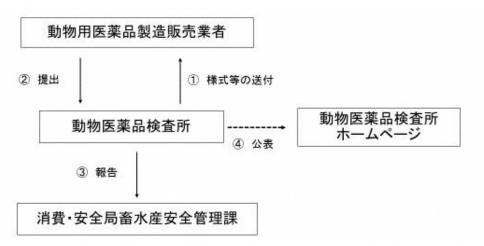


図 9 動物用抗菌剤販売量調査実施体制

④ 今後の展望

JVARM の今後の主な課題は、1)家畜由来細菌及び愛玩動物由来細菌の全ゲノム解析により、より高度な薬剤耐性遺伝子等の調査・解析をさらに進め、動向調査への活用及びヒト分野との比較についても検討、2)動物用抗菌剤の使用量を WOAH が提示する統一法により算出したバイオマス重量を参考とした評価、3)畜産現場周辺の環境における薬剤耐性菌の分布状況の調査方法を確立して実施していくことの3点である。今後は、JVARM で実施している動物分野におけるモニタリングについて継続するとともに、これらの課題に対応した取組みも開始する。さらに、ワンヘルス動向調査推進のため、JANIS との全ゲノム解析データの比較等、引き続き連携を深めていく予定である。他分野と連携することにより薬剤耐性菌伝達過程の解明を進め、リスク評価やリスク管理の根拠となるデータが集積されると考えられる。

(6)日本の抗菌薬動向調査(JSAC、J-SIPHE)

① 概要

2015 年に厚生労働科学研究を通じて構築された抗菌薬使用動向調査システム Japan Antimicrobial Consumption Surveillance (JACS) は、経年的且つ継続的に国レベルで日本のヒトにおける抗菌薬の動向調査を行い、AMR 対策に活用していくために、AMRCRC に移管し、2022 年に名称を Japan Surveillance of Antimicrobial Consumption (JSAC) (抗菌薬使用サーベイランス) へ変更した。現在、JSAC (http://amrcrc.ncgm.go.jp/surveillance/index.html) では、全国および都道府県のヒトに対する抗微生物薬の使用 (AMU) 状況を販売量情報および NDB を用いて調査されている。また、J-SIPHE (https://j-siphe.ncgm.go.jp/) では、各参加施設の AUD や DOT が集計され、年報として公表されている。

②調査の方法

販売量情報から全体、剤形(内服・注射)別、都道府県別などに分類した上で、成分毎に力価を算出し、WHO が提唱する ATC 分類*あるいは AWaRe 分類*に分けて集計する。特にヒトへの AMU では、それらを WHO が定義した DDD で補正し、人口補正して DID(DDDs/1,000 inhabitants/day)として算出し、経年的に示している。またワンヘルスとしての AMU は力価換算した値を重量ベースで ATC 分類毎にまとめ、他での AMU と合算して示している。また、医療機関における AMU は、J-SIPHE における調査結果を示している。

*ATC 分類:Anatomical Therapeutic Chemical Classification System。WHO が提唱する医薬品の分類方法

*AWaRe 分類:WHO が推奨する抗菌薬適正使用の指標(P.86 参照)

③ 今後の展望

これまでなかった日本における AMU をサーベイランスできる JSAC、J-SIPHE が構築され、経年的な AMU の動向を国民へ還元できる体制が整った。AMU の情報源には販売量や保険請求情報などが存在する。用いる情報源や見せ方は、目的に応じて変える必要があり、どのような形で継続的に集計し、フィードバックしていくかは今後も検討していく必要がある。

(7) ヒト由来 Campylobacter spp.の薬剤耐性状況の調査

① 概要

ヒト由来カンピロバクター属菌の薬剤耐性菌出現状況については、現在、厚生労働科学研究費補助金による食品の安全確保推進研究事業の中で、東京都健康安全研究センターが研究として調査を行っている⁷。

② 調査方法

2021 年に東京都内の病院で下痢症患者糞便から分離された Campylobacter jejuni 42 株及び Campylobacter coli 3 株を対象に、米国 CLSI 法に準拠してディスク法で薬剤感受性試験を行った。 2021 年分離株は新型コロナウイルス感染症流行の影響により、供試菌株が非常に少なかった。供試薬剤は ABPC、TC、NA、CPFX、EM の 5 薬剤である。結果の判定は、阻止円径を測定し、プロトコル⁷の感受性判定表に従って行った。

③ 今後の展望

Campyrobacter jejuni/coli の耐性菌出現状況を広域的に把握するためには、供試薬剤、実施方法、判定基準等を統一して行う必要がある。実施方法は米国 CLSI 法のディスク法に準拠しているが、判定基準は EM、CPFX、EM の 3 薬剤しか記載されていないため、その他の薬剤については EUCAST や文献等を参考に厚生労働科学研究費助成金による食品の安全確保推進事業の中で統一した基準を設定し、それに従って判定した 7。今後、ヒト由来株のみならず食品由来についても共通の方法を用いて薬剤感受性試験を実施し、耐性菌出現状況を全国規模で把握している必要がある。

(8) ヒト及び食品由来の Non-typhoidal *Salmonella* spp.の薬剤耐性状況の調査

① 概要

食品由来耐性菌については、これまでに多くの地方衛生研究所が食品由来細菌の耐性状況を調査してきた実績があり、現在、厚生労働科学研究費補助金による食品の安全確保推進研究事業の中で、組織化された複数の地方衛生研究所が食品由来耐性菌モニタリングを研究として実施している⁸。統一された方法で全国規模の食品由来細菌の耐性状況が調査されたのは、本邦で初めてと思われる。さらに、得られたデータは、WHOによって構築されたGLASSにも報告されている。

② 調査方法

全国 21 地方衛生研究所の協力を得て、これらの地方衛生研究所において収集されているヒト(患 者)由来及び食品由来細菌、特にサルモネラ属菌について、共通のプロトコル、薬剤、器材等を用い て薬剤耐性状況調査が実施された 8。2015 年から 2021 年に、ヒト(患者)及び食品から分離された サルモネラ属菌株を対象とした。ヒト由来株は、感染性胃腸炎や食中毒の患者検体から分離されたも のを対象とし、食品由来株は、分離した食品の種類、分離年月日を求め、食品が鶏肉の場合は、国産、 輸入(国名)、不明の情報を収集した。協力 21 地方衛生研究所でサルモネラ属菌と判定された菌株 を用い、「地衛研グループ薬剤感受性検査プロトコル」にしたがって、CLSIディスク拡散法による 薬剤感受性検査を実施した。感受性ディスクとしては、アンピシリン(ABPC)、ゲンタマイシン (GM)、カナマイシン(KM)、ストレプトマイシン(SM)、テトラサイクリン(TC)、ST 合剤 (ST)、クロラムフェニコール(CP)、セフォタキシム(CTX)、セフタジジム(CAZ)、セフォ キシチン(CFX)、ホスホマイシン(FOM)、ナリジクス酸(NA)、シプロフロキサシン (CPFX)、ノルフロキサシン(NFLX)、アミカシン(AMK)、イミペネム(IPM)、メロペネム (MEPM)の 17 剤ディスクを用いた。検査に用いる感受性ディスク等の試薬、ディスクディスペン サーやノギス等の器具は全ての地方衛生研究所で共通のものを用いた。寒天平板上の感受性ディスク の配置は、阻止円が融合しないよう、プロトコルに示す配置図のように配置した。結果の判定は、阻 止円直径を測定し、プロトコルの感受性判定表にしたがって行われた。

③ 今後の展望

ヒト由来株と食品由来株の各種抗菌薬に対する耐性率に明瞭な類似が認められている。これらのデータは、環境一動物一食品一ヒトを包括するワンヘルス・アプローチにおいて重要であり、相互変換ソフトにより JANIS 及び JVARM のデータと統合し、三者を一元的に評価できるシステムが確立している。

(9) Neisseria gonorrhoeae (淋菌) の薬剤耐性状況の調査

① 概要

淋菌感染症の診断では核酸検査の利用が進み、一部の症例のみ分離培養が行われている現状がある。 淋菌の薬剤感受性試験は一般の検査室や検査会社において容易に実施することはできないことから、 JANIS による動向把握は困難である。このことから、2015 年より AMED による研究によって、 Neisseria gonorrhoeae (淋菌感染症)の薬剤耐性状況の調査が実施されている。得られたデータは、 WHO によって行われている GLASS にも報告されている。

② 調査方法

全国の協力診療所(40 か所以上)が設定されている。各診療所から検体あるいは検査会社経由で菌株を全国5カ所の検査可能な施設で収集し、薬剤感受性試験を実施した。薬剤感受性試験は CLSI あるいは EUCAST で推奨されている寒天平板希釈法あるいは Etest によって測定した。測定薬剤は推奨薬剤である CTRX 及びスペクチノマイシン、海外の2剤併用療法の一剤として利用されている AZM に加えて、過去に推奨薬剤として利用されてきた3剤(PCG、CFIX、CPFX)の MIC を求めた。感受性・耐性判定は、EUCAST の基準を用いた(表 102)。参考として CLSI(M100-S25)の基準(表 103)を用いた耐性率を示した(表 104)。表に示した AZM に関しては CLSI(M100-S27)により示された耐性遺伝子をもつ菌株の MIC 分布に基づいた指標である。

③ 今後の展望

淋菌感染症の治療薬剤選択は、薬剤感受性試験実施が困難であることから、動向調査の結果に基づいて推奨薬剤を決定し経験的に実施する必要がある。

経験的治療は95%以上の成功率を得られる可能性がある薬剤が推奨される。現在国内で推奨可能な薬剤はセフトリアキソン及びスペクチノマイシンのみである。咽頭に存在する淋菌が感染源として重要であることから、咽頭に存在する淋菌も除菌することが求められる。しかしながら、スペクチノマイシンは体内動態から咽頭に存在する淋菌には無効であることから、実質的にはセフトリアキソンが唯一残された薬剤である。

国内の分離株の薬剤感受性試験国内ではセフトリアキソン MIC $0.5~\mu g/mL$ を示す株が散発的に分離されている。海外でのセフトリアキソン接種は筋注であり、用量が制限される。このためセフトリアキソン MIC $0.5~\mu g/mL$ の株が海外に伝播した際には、セフトリアキソンが無効となる可能性が高いため、今後の分離の動向を注視していく必要がある。 $2017~\mu g/mL$ 年以降、大阪で $10~\mu g/mL$ を示す株が散発的に分離なるのために分離である。 $10~\mu g/mL$ の株が海外に伝播した際には、セフトリアキソンが無効となる可能性が高いため、今後の分離の動向を注視していく必要がある。 $10~\mu g/mL$ を示す株が散発的に分離をいる $10~\mu g/mL$ を示す株が散発的に分離をいる $10~\mu g/mL$ を示す株が散発的に分離を示する。 $10~\mu g/mL$ を示す株が散発的に分離されている $10~\mu g/mL$ を示す株が散発的に分離されている $10~\mu g/mL$ を示す株が散発的に分離されている $10~\mu g/mL$ を示す株が散発的に分離されている $10~\mu g/mL$ を示す株が散発的に分離されている。 $10~\mu g/mL$ を示すといる。 $10~\mu g/mL$ のかりになる。 $10~\mu g/mL$ のかりをする。 $10~\mu g/mL$ のかりになる。 $10~\mu g/mL$ のかり

表 103 EUCAST(μg/mL)を使用した Neisseria gonorrhoeae の薬剤感受性判定基準

	Susceptible		Resistant
PCG	≦0.06	0.125–1	>1
CFIX	≤ 0.125	-	> 0.125
CTRX	≦ 0.125	-	> 0.125
SPCM	≦64	-	> 64
AZM	≦ 0.25	0.5	> 0.5
CPFX	≦0.03	0.06	> 0.06

表 104 CLSI (μg/mL) を使用した Neisseria gonorrhoeae の薬剤感受性判定基準

	Susceptible		Resistant
PCG	≦0.06	0.125–1	≧2
CFIX	≦ 0.25	-	-
CTRX	≤ 0.25	-	-
SPCM	≦32	64	≥ 128
AZM*	-	-	-
CPFX	≦0.06	0.12-0.5	≧1

^{*}CLSI (M100-S27) で示された Epidemiological cutoff value は wild type (WT) \leq 1、non-WT \geq 2

表 105 CLSI(M100-S25)の基準を用いた Neisseria gonorrhoeae の耐性率(%)

		_	
	2015 年	2016 年	2017 年
CTRX\$	0.6	0.4	0.5
SPCM	0	0	0
AZM*	3.2	4.0	4.0
PCG [†]	36.0 (96.1)	35.8 (96.7)	37.8 (99.0) †
CFIX ^{\$}	16.1	11.0	10.0
CPFX [†]	79.0 (79.4)	77.9 (78.3)	74.2 (75.8)

^{\$} 非感受性率

^{*} CLSI(M100-S27)で示された Epidemiological cutoff value(2 µg/mL 以上を非野生株)による値であり、耐性率とは異なる。

^{†*}括弧内の数字は、耐性と中間耐性の率の和。

(10) *Salmonella* Typhi、*Salmonella* Paratyphi A、*Shigella* spp. の薬剤 耐性状況の調査

① 概要

腸チフス、パラチフス、細菌性赤痢については、菌分離によって確定診断が行われる。起因菌であるチフス菌、パラチフス A 菌、細菌性赤痢菌については薬剤耐性に関する動向調査は存在しないことから、疫学調査のための通知に基づいて送付される菌株の感受性試験が国立感染研究所において実施されている。細菌性赤痢菌の薬剤耐性に関する情報は GLASS に報告するデータとしても活用されている。

② 調査方法

疫学調査のための通知(健感発第 1009001 号、食安監発第 1009002 号)に基づいて送付される菌株について薬剤感受性試験が実施されている。薬剤感受性試験では、微量液体希釈法(チフス菌、パラチフス A 菌、2022 年以後の赤痢菌)、ディスク拡散法(2021 年以前の赤痢菌)を用いて、CLSIから示される基準に従って判定が行われた。

③ 今後の展望

腸チフス、パラチフスは抗菌薬治療が必須であり、治療に有効な薬剤を適切に選択するためにも継続的な動向調査の実施が必要である。細菌性赤痢ではキノロン等の一般に使用される薬剤への耐性率が高く、抗菌薬を投与しても再発の可能性があり、国内での感染拡大の可能性もあることから、注意が必要である。

(11) 薬剤耐性(AMR) ワンヘルスプラットフォーム

〇 概要

AMRCRC では、2019 年 10 月よりヒト・動物・環境分野分野の感染症関連情報をわかりやすく提供するウェブサイト『薬剤耐性 (AMR) ワンヘルスプラットフォーム』

(https://amr-onehealth-platform.ncgm.go.jp/home)を公開している。薬剤耐性率や抗菌薬使用量など AMR に関わる指標の動向を、分野別・都道府県別・経年別に、ユーザーサイドで自由に閲覧できるシステムである。扱う情報は、主に本報告書および AMED 研究などの成果物から二次利用している。

2021 年 11 月に、新たに都道府県ホームページを設け、各県のホーム画面からさまざまな指標をまとめて見られるようになった。地域における AMR 対策のさらなる推進のために、当プラットフォームを活用して戴きたい。

引用文献

- 1. World Health Organization. "Global Antimicrobial Resistance Surveillance System. Manual for Early implementation" http://www.who.int/antimicrobial-resistance/publications/surveillance-system-manual/en/
- 農林水産省動物医薬品検査所. "薬剤耐性菌のモニタリング Monitoring of AMR" http://www.maff.go.jp/nval/yakuzai/yakuzai_p3.html.
- 3. World Organization for Animal Health (OIE) ,"Harmonisation of National Antimicrobial Resistance Surveillance and Monitoring Programmes."
 - http://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_antibio_harmonisation.pdf
- 4. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_antibio_monitoring.pdf
- 5. 農林水産省動物医薬品検査所. "JVARM で調査した大腸菌のアンチバイオグラム" http://www.maff.go.jp/nval/yakuzai/yakuzai_p3-1.html.
- 6. World Organization for Animal Health (OIE) ,"Monitoring of the Quantities and Usage patterns of Antimicrobial Agents Used in Food-Producing Animal"
- 7. Lahra MM, et al. "Cooperative recognition of internationally disseminated ceftriaxone-resistant *Neisseria gonorrhoeae* strain," Emerg Infect Dis 2018; 24; 735-740.
- 8. 小西典子ら. "厚生労働科学研究費補助金(食品の安全確保推進研究事業)令和元年度 分担研究報告書 食品由来薬剤耐性 菌のサーベイランスのための研究 分担課題 食品及びヒト由来カンピロバクター,大腸菌の薬剤耐性菌出現状況の把握" 2020.
- 9. Hiki M, *et al.* "Decreased Resistance to Broad-Spectram Cephalosporin in *Escherichia coli* from Healthy Broilers at Farms in Japan After Voluntary Withdrawal of Ceftiofur," Foodborne Pathogens Dis. 2015; 12:639-643.
- 10. Nakayama SI, et al. "New ceftriaxone- and multidrug-resistant *Neisseria gonorrhoeae* strain with a novel mosaic *penA* gene isolated in Japan," Antimicrob Agents Chemorher 2016; 60; 4339-4341.

主な動向調査のウェブサイト

AMR 臨床リファレンスセンター

http://amrcrc.ncgm.go.jp/

感染対策連携共通プラットフォーム(J-SIPHE)

https://j-siphe.ncgm.go.jp/

薬剤耐性(AMR)ワンヘルス動向調査

https://amr-onehealth.ncgm.go.jp/

薬剤耐性(AMR) ワンヘルスプラットフォーム

https://amr-onehealth-platform.ncgm.go.jp/home

抗菌薬使用サーベイランス (JSAC)

http://amrcrc.ncgm.go.jp/surveillance/index.html

厚生労働省院内感染対策サーベイランス(JANIS)

https://janis.mhlw.go.jp/

感染症発生動向調査事業(NESID)

https://www.niid.go.jp/niid/ja/allarticles/surveillance/2270-idwr/nenpou/6980-idwr-nenpo2015.html

動物由来薬剤耐性菌モニタリング(JVARM)

http://www.maff.go.jp/nval/yakuzai/yakuzai_p3.html

公益財団法人結核予防会結核研究所疫学情報センター

http://www.jata.or.jp/rit/ekigaku/

開催要綱

薬剤耐性ワンヘルス動向調査検討会

平成 29 年 1 月 16 日 令和 5 年 10 月 4 日一部改正

1. 目的

近年の薬剤耐性(Antimicrobial Resistance: AMR)対策を進める機運の高まりのなかで、ヒト、動物、食品、環境といった垣根を超えた「ワンヘルス」としての薬剤耐性に係る統合的な動向調査の重要性が指摘されている。

令和5年4月7日に策定された「薬剤耐性(AMR)対策アクションプラン(2023-2027)」においても、このような「薬剤耐性ワンヘルス動向調査」に係る体制を推進することとしている。

こうした状況を踏まえ、「薬剤耐性ワンヘルス動向調査」に係る技術的事項について検討することを目的として、厚生労働省健康・生活衛生局感染症対策部長の下、有識者の参集を求め、薬剤耐性ワンヘルス動向調査検討会(以下「検討会」という。)を開催し、所要の検討を行い、年次報告書をとりまとめる。

2. 検討会構成

- (1)検討会の構成員は、学識経験者及びその他の関係者とする。
- (2) 座長は、構成員の万選により選出する。
- (3)検討会は、座長が統括する。
- (4)健康・生活衛生局感染症対策部長は、必要に応じ、構成員以外の有識者等に 出席を求めることができる。

3. 構成員の任期等

- (1)構成員の任期は概ね2年とする。ただし、補欠の構成委員の任期は、前任者の残任期間とする。
- (2) 構成員は、再任されることができる。

4. その他

(1)検討会は厚生労働省健康・生活衛生局感染症対策部長が開催する。

- (2)検討会の庶務は、農林水産省消費安全局畜水産安全管理課、環境省水・大気環境局総務課の協力を得て、厚生労働省健康・生活衛生局感染症対策部感染症対策課において処理する。
- (3) 検討会は、原則として公開とする。
- (4) この要綱に定めるもののほか、検討会の運営に関し必要な事項は、検討会において定める。

本報告書作成の経緯

本報告書は、第1回(平成29年2月3日(金))、第2回(平成29年3月8日(水))、第3回(平成29年8月21日(月))、第4回(平成29年10月2日(月))、第5回(平成30年9月5日(水))、第6回(平成30年10月22日(月))、第7回(令和元年10月17日(木))、第8回(令和2年11月6日(金))、第9回(令和4年1月17日(月))、第10回(令和4年11月21日(月))、第11回(令和5年12月13日(水))の薬剤耐性ワンヘルス動向調査検討会での議論を踏まえ、参考人及び協力府省庁からの協力も得た上で作成された。

薬剤耐性ワンヘルス動向調査検討会委員(敬称略、五十音順)

浅井 鉄夫 岐阜大学大学院連合獣医学研究科動物感染症制御学 教授

勝田 賢 国立研究開発法人農業・食品産業技術総合研究機構動物衛生研究部門 所長

今村 英仁 公益社団法人 日本医師会 常任理事

黒田 誠 国立感染症研究所 病原体ゲノム解析研究センター長

小林 創太 感染症研究領域 腸管病原菌グループ グループ長補佐

境 政人 公益社団法人 日本獣医師会 専務理事

四宮 博人 愛媛県立衛生環境研究所 所長

柴山 恵吾 名古屋大学大学院医学系研究科 教授

菅井 基行 国立感染症研究所 薬剤耐性研究センター長

関谷 辰朗 農林水産省動物医薬品検査所検査第二部 部長

田中 宏明 京都大学大学院工学研究科附属流域圏総合環境質研究センター 教授

群馬大学非常勤講師、国立感染症研究所客員研究員、松田町国民健康保険診療所藤本修平

所長

国立研究開発法人国立国際医療研究センターAMR 臨床リファレンスセンター 臨

松永 展明 床疫学室長

御手洗 聡 結核予防会結核研究所抗酸菌部 部長

村木 優一 京都薬科大学臨床薬剤疫学分野 教授

渡邉 治雄* 国立感染症研究所名誉所員、黒住研究振興財団理事長

*座長

参考人及び報告書作成協力者(敬称略、五十音順)

明田 幸宏 国立感染症研究所 細菌第一部 部長

泉谷 秀昌 国立感染症研究所 細菌第一部 第二室長

国立研究開発法人国立国際医療研究センターAMR 臨床リファレンスセンター セン

大曲 貴夫 ター長

金森 肇 東北大学大学院医学系研究科内科病態学講座 総合感染症学分野

小西 典子 東京都健康安全研究センター微生物部食品微生物研究科 主任研究員

国立研究開発法人国立国際医療研究センターAMR 臨床リファレンスセンター薬剤疫

都築 慎也 学室長

鈴木 里和 国立感染症研究所 薬剤耐性研究センター第一室 室長

鈴木 基 国立感染症研究所 感染症疫学センター センター長

砂川 富正 国立感染症研究所 実地感染症疫学研究センター センター長

藤友 結実 国立研究開発法人国立国際医療研究センターAMR 臨床リファレンスセンター情報・

子 教育支援室長

矢原 耕史 国立感染症研究所 薬剤耐性研究センター第二室 室長

山岸 拓也 国立感染症研究所 薬剤耐性研究センター第四室 室長

関口 秀人 農林水産省 動物医薬品検査所検査第二部動物分野 AMR センター センター長

川西 路子 農林水産省 動物医薬品検査所検査第二部動物分野 AMR センター 上席主任研究官

協力府省庁

内閣府食品安全委員会事務局

国土交通省

農林水産省

環境省

事務局(厚生労働省健康・生活衛生局感染症対策部感染症対策課)

荒木 裕人 感染症対策課長

横田 栄一 感染症情報管理室 室長

杉原 淳課長補佐松浦 祐史課長補佐上地 幸平課長補佐

宮原 悠太 主査

薬剤耐性ワンヘルス動向調査年次報告書 2023

令和6年4月5日発行

発行 厚生労働省健康・生活衛生局感染症対策部感染症対策課 〒100-8916 東京都千代田区霞が関1丁目 2-2

薬剤耐性ワンヘルス動向調査検討会.

薬剤耐性ワンヘルス動向調査年次報告書 2023. 東京: 厚生労働省健康・生活衛生局感染症対策部感染症対策課; 2023.

Suggested citation: The AMR One Health Surveillance Committee. Nippon AMR One Health Report (NAOR) 2023. Tokyo: Division of Infectious Diseases Prevention and Control, Department of Infectious Disease Prevention and Control, Public Health Bureau, Ministry of Health, Labour and Welfare; 2023